
TensorRight: Automated Verification of Tensor Graph

Rewrites

JAI ARORA, University of Illinois Urbana-Champaign, USA
SIRUI LU, University of Washington, USA
DEVANSH JAIN, University of Illinois Urbana-Champaign, USA
TIANFAN XU, University of Illinois Urbana-Champaign, USA
FARZIN HOUSHMAND, Google, USA
PHITCHAYA MANGPO PHOTHILIMTHANA, Google DeepMind, USA
MOHSEN LESANI, University of California, Santa Cruz, USA
PRAVEEN NARAYANAN, Google, USA
KARTHIK SRINIVASA MURTHY, Google, USA
RASTISLAV BODIK, Google DeepMind, USA
AMIT SABNE, Google, USA
CHARITH MENDIS, University of Illinois Urbana-Champaign, USA

Tensor compilers, essential for generating efficient code for deep learning models across various applications,
employ tensor graph rewrites as one of the key optimizations. These rewrites optimize tensor computational
graphs with the expectation of preserving semantics for tensors of arbitrary rank and size. Despite this
expectation, to the best of our knowledge, there does not exist a fully automated verification system to prove
the soundness of these rewrites for tensors of arbitrary rank and size. Previous works, while successful in
verifying rewrites with tensors of concrete rank, do not provide guarantees in the unbounded setting.

To fill this gap, we introduce TensorRight, the first automatic verification system that can verify tensor
graph rewrites for input tensors of arbitrary rank and size. We introduce a core language, TensorRight DSL,
to represent rewrite rules using a novel axis definition, called aggregated-axis, which allows us to reason about
an unbounded number of axes. We achieve unbounded verification by proving that there exists a bound on
tensor ranks, under which bounded verification of all instances implies the correctness of the rewrite rule
in the unbounded setting. We derive an algorithm to compute this rank using the denotational semantics of
TensorRight DSL. TensorRight employs this algorithm to generate a finite number of bounded-verification
proof obligations, which are then dispatched to an SMT solver using symbolic execution to automatically verify
the correctness of the rewrite rules. We evaluate TensorRight’s verification capabilities by implementing
rewrite rules present in XLA’s algebraic simplifier. The results demonstrate that TensorRight can prove the
correctness of 115 out of 175 rules in their full generality, while the closest automatic, bounded-verification
system can express only 18 of these rules.

Authors’ Contact Information: Jai Arora, University of Illinois Urbana-Champaign, USA, jaia3@illinois.edu; Sirui Lu,
University of Washington, USA, siruilu@cs.washington.edu; Devansh Jain, University of Illinois Urbana-Champaign,
USA, devansh9@illinois.edu; Tianfan Xu, University of Illinois Urbana-Champaign, USA, tianfan3@illinois.edu; Farzin
Houshmand, Google, USA, farzinh@google.com; Phitchaya Mangpo Phothilimthana, Google DeepMind, USA, mangpo@
google.com; Mohsen Lesani, University of California, Santa Cruz, USA, mlesani@ucsc.edu; Praveen Narayanan, Google,
USA, pravnar@google.com; Karthik Srinivasa Murthy, Google, USA, ksmurthy@google.com; Rastislav Bodik, Google
DeepMind, USA, rastislavb@google.com; Amit Sabne, Google, USA, asabne@google.com; Charith Mendis, University of
Illinois Urbana-Champaign, USA, charithm@illinois.edu.

© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/1-ART29
https://doi.org/10.1145/3704865

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0009-0004-7759-481X
HTTPS://ORCID.ORG/0000-0003-2757-7603
HTTPS://ORCID.ORG/0009-0006-1442-1502
HTTPS://ORCID.ORG/0000-0003-2528-0507
HTTPS://ORCID.ORG/0000-0001-8516-2401
HTTPS://ORCID.ORG/0000-0003-3492-3690
HTTPS://ORCID.ORG/0000-0002-3165-2322
HTTPS://ORCID.ORG/0000-0003-3331-9627
HTTPS://ORCID.ORG/0000-0002-6063-9653
HTTPS://ORCID.ORG/0000-0001-6639-1647
HTTPS://ORCID.ORG/0000-0002-2179-0078
HTTPS://ORCID.ORG/0000-0002-8140-2321
https://orcid.org/0009-0004-7759-481X
https://orcid.org/0000-0003-2757-7603
https://orcid.org/0009-0006-1442-1502
https://orcid.org/0000-0003-2528-0507
https://orcid.org/0000-0001-8516-2401
https://orcid.org/0000-0001-8516-2401
https://orcid.org/0000-0003-3492-3690
https://orcid.org/0000-0002-3165-2322
https://orcid.org/0000-0003-3331-9627
https://orcid.org/0000-0002-6063-9653
https://orcid.org/0000-0001-6639-1647
https://orcid.org/0000-0002-2179-0078
https://orcid.org/0000-0002-8140-2321
https://doi.org/10.1145/3704865
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

29:2 Arora et al.

CCS Concepts: • Theory of computation→ Semantics and reasoning; Logic and verification; Auto-
mated reasoning; • Software and its engineering→ Compilers; Formal methods.

Additional Key Words and Phrases: Unbounded Verification, Tensor Compilers, Denotational Semantics

ACM Reference Format:
Jai Arora, Sirui Lu, Devansh Jain, Tianfan Xu, Farzin Houshmand, Phitchaya Mangpo Phothilimthana, Mohsen
Lesani, Praveen Narayanan, Karthik Srinivasa Murthy, Rastislav Bodik, Amit Sabne, and Charith Mendis. 2025.
TensorRight: Automated Verification of Tensor Graph Rewrites. Proc. ACM Program. Lang. 9, POPL, Article 29
(January 2025), 32 pages. https://doi.org/10.1145/3704865

1 Introduction

Deep learning frameworks, such as TensorFlow [1], PyTorch [31], and JAX [8], along with their
backend optimizing tensor compilers, such as XLA [11] and TorchInductor [2], have been instru-
mental in enabling machine learning (ML) practitioners to experiment, train, and deploy various
neural network architectures. These tensor compilers manipulate computations with tensors as
first-class objects, utilizing tensor computational graphs as their intermediate representation (IR).
The nodes in these graphs represent tensor operators, while the edges denote input/output tensors.
Examples include XLA’s High Level Operators (XLA-HLO) [12], PyTorch’s torch.fx operators [33],
and ONNX’s tensor operators [10]. Middle-end tensor compiler optimizations often transform
these tensor graphs to produce more efficient variants. A key optimization which has attracted
significant research [20, 38, 41] is tensor graph rewrites. This optimization is a common pass in
industrial tensor compilers such as XLA1.

Tensor graph rewrites transform a subgraph of the original tensor graph to an equivalent version
that is more efficient. For example, consider the dot (einsum) operator that takes two tensors and
a set of contraction and batch axes as input and performs sum-of-products over the specified
contraction axes. If the batch and contraction axes are empty (precondition), an expensive dot
operation may be decomposed into a simpler composition of element-wise multiplication and
expand operations (represented as dot(A,B)⇒𝐶 binary(expand(A), expand(B), ∗) in our notation,
with precondition 𝐶). In general, these rewrite rules are expected to be correct for tensors of
arbitrary rank (number of axes) and size (individual axis sizes). We term this property as the rewrite
rules being rank- and size-polymorphic. We found that most tensor graph rewrites in XLA’s algebraic
simplifier have this property. Hence, it is important that compiler developers ascertain that the
rules are indeed correct for input tensors of arbitrary rank and size.

There have been multiple efforts at formally proving the correctness of these rewrites. However,
automatically verifying tensor graph rewrites for tensors of arbitrary rank and size has remained
challenging. Previous automatic verification techniques instantiate fixed-ranked, concrete-sized
tensors with symbolic values as a part of their verification process. As a result, their proofs do not
generalize to the unbounded setting, where input tensors can be of arbitrary rank and size. Further,
existing verification systems do not support preconditions on rules, which we find abundant
in compilers such as XLA. For example, TASO [20] proposes an axiomatic approach to verify
tensor graph rewrites. The rewrite rules they synthesize from their axiom pool are rank- and
size-polymorphic. However, the axioms themselves are only verified on small, concrete-sized input
tensors. TENSAT [41] improves the search efficiency of TASO, but relies on TASO’s rewrite rule
synthesis and verification process. PET [38] uses statistical testing to give rigorous guarantees on
more expressive rewrites for tensor computational graphs of concrete-rank and concrete-sized
tensors. Successful works that have verified tensor graph rewrites in the unbounded setting have
been manual verification efforts with proof assistants like Coq [25, 26].
1https://github.com/openxla/xla/blob/main/xla/hlo/transforms/simplifiers/algebraic_simplifier.cc

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

https://doi.org/10.1145/3704865
https://github.com/openxla/xla/blob/main/xla/hlo/transforms/simplifiers/algebraic_simplifier.cc

TensorRight: Automated Verification of Tensor Graph Rewrites 29:3

In this paper, we introduce the first automatic, push-button verification system, TensorRight,
that allows users to succinctly express and verify tensor graph rewrite rules for input tensors of
arbitrary rank and size. Further, in order to aid tensor compiler developers, we developTensorRight
to be able to handle the complexities of rewrite rules found in the XLA compiler.We have to overcome
several key challenges in realizing these goals.

Representation. First, we need to succinctly represent tensor graph rewrite rules in a way that
allows reasoning about their correctness in the unbounded setting. Second, we need to model the
highly parameterized operators in XLA-HLO. For example, XLA-HLO’s conv operator works with
arbitrary batch, contraction, and spatial axes specifications and has rich padding and dilation
attributes. Further, XLA rewrite rules can be guarded by complicated preconditions.
We overcome these challenges by designing a rewrite rule specification language, called Ten-

sorRight DSL, with tensor operators closely resembling those in XLA-HLO. TensorRight DSL
introduces a novel axis definition called aggregated-axis that represents a possibly unbounded set
of axes, rather than capturing one axis at a time. A tensor in TensorRight DSL consists of a finite
number of aggregated-axes, where they can potentially be instantiated to any number of axes. This
allows us to reason about how input tensors are mutated by tensor operators, treating similar axes
collectively. All TensorRight DSL operators are defined to work with aggregated-axes, making the
rewrite specifications rank- and size-polymorphic. Additionally, the representation with aggregated-
axes is general enough to support a sizable subset of tensor operators and their parameterizations,
as defined in XLA-HLO (e.g. conv). However, the representation cannot support layout-sensitive
operators, such as reshape and bitcast. We implemented the most common operators appearing
in XLA’s rewrite rules to demonstrate TensorRight DSL’s expressivity. Rewrite specifications in
TensorRight DSL accept preconditions, which can also be rank- and size-polymorphic. Finally,
we provide denotational semantics of these operators, which we use to verify these rules.

Verification. The next major challenge that we need to overcome is: given specifications in the
TensorRight DSL, how can we automatically verify that the rewrites are correct? This requires
proving them correct in the unbounded setting. Instantiating unbounded tensors is not feasible,
while using symbolic tensors of concrete-rank and size during automatic verification can result in
proofs that only hold for input tensors of that particular rank and size, as shown in §2.3.

To handle unbounded sizes, we leverage the capabilities of SMT solvers to perform unbounded
reasoning using uninterpreted functions and unbounded integers. For unbounded ranks, we over-
come the challenge by proving that there exists a bound on the ranks, such that if we prove the rule
correct for all possible ranks within the bound, then the rule is also correct for arbitrary ranks and
sizes. This allows us to reduce the unbounded verification problem to a set of bounded verification
cases, which can be dispatched to an automatic verification engine. We derive a bound inference
algorithm using the denotational semantics of TensorRight DSL. Given these theoretical founda-
tions, TensorRight automatically verifies a given rewrite rule written in TensorRight DSL in two
steps. First, it uses the bound inference algorithm to find a sufficient rank for each aggregated-axis.
Next, for all ranks equal to or below this bound, TensorRight instantiates concrete-ranked input
tensors for each aggregated-axis. It then uses big-step operational semantics, derived from the
denotational semantics of TensorRight DSL, to create proof obligations as SMT queries using
symbolic execution. If all of these bounded cases are proven by an SMT solver, TensorRight then
concludes that the rewrite rule is correct.

We implement the TensorRight system in Haskell and use Grisette [29] as the symbolic evalua-
tion engine. We further provide a TensorRight Frontend that abstracts away some core Tensor-
Right DSL constructs to make developing rewrite rules easier. TensorRight dispatches all SMT
queries to the Z3 [15] SMT solver to ascertain the soundness of a given rewrite rule. To evaluate

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

29:4 Arora et al.

TensorRight’s capabilities in representation and verification, we assessed it using a comprehensive
set of rules incorporated within XLA’s algebraic simplifier. We successfully represented 121 of these
rules and verified 115 of them in TensorRight. Almost all rules were verified in the unbounded
setting within a second. Comparatively, other bounded-verification systems, such as TASO [20] and
PET [38], could only express 14 and 18 rules and verify 6 and 16 rules, respectively, exemplifying
TensorRight’s representation and verification capabilities. Further, we show case studies where
TensorRight helps generalize rewrites with complicated preconditions, showcasing its usefulness
during compiler development.

In summary, this paper makes the following contributions.
• We present a language, TensorRight DSL (§4) to specify tensor graph rewrites with (1) a
novel axis construct called aggregated-axes, allowing representation of operators and rewrite
rules that are rank- and size-polymorphic (2) operator specifications that closely resemble
XLA-HLO (3) precondition specifications on rewrite rules.
• We provide denotational semantics for TensorRight DSL (§5). To the best of our knowledge,
this is the first formalization of a sizable subset of operators in a production-quality tensor IR.
• We provide the first automatic verification strategy (§6) that can reason about the correctness
of tensor graph rewrites that are rank- and size-polymorphic.
• We develop TensorRight that implements this verification strategy and evaluate it (§8) by
representing and verifying tensor graph rewrites present in XLA’s algebraic simplifier.

TensorRight is open-source, publicly available at https://github.com/ADAPT-uiuc/TensorRight

2 Background and Motivation

We first provide background on tensors and related concepts before motivating the need for
automatic and unbounded verification of tensor graph rewrites. We then describe a key insight of
our unbounded-verification methodology.

2.1 Preliminaries

Tensors are a generalization of scalars (0-dimensional tensors), vectors (1-dimensional tensors), and
matrices (2-dimensional tensors) to 𝑛-dimensional objects. A popular implementation of a tensor is
multi-dimensional arrays. An axis of a tensor (also commonly known as a dimension) represents a
direction across which the tensor’s data can be traversed. The rank of a tensor (also commonly
known as its dimensionality) refers to the number of axes the tensor has. The shape of a tensor
describes the size of each axis, i.e., the number of elements that exist along each axis. The size of a
tensor refers to the total number of elements in the tensor, calculated as the product of individual
axis-sizes. The axes of an 𝑛-dimensional tensor are numbered from 0 up to 𝑛 − 1. Each element of a
tensor is uniquely identified by a list of positional indices, with one index for each axis.

For example, a 2-dimensional tensor𝑚, containing 3 groups of elements along axis 0 and 4 groups
of elements along axis 1, has a rank of 2, a shape of 3 × 4, and a size of 12. Such a tensor can be
accessed by a pair of positional indices:𝑚[𝑖, 𝑗] denotes the value at the 𝑖𝑡ℎ position along axis 0
and 𝑗𝑡ℎ position along axis 1. Another way to implement tensors, called named tensors, assigns
explicit names to the axes of a tensor, referred to as named-axes. TensorRight adopts the latter
approach, which we describe in detail in §4.1.

Tensor Graph Rewrites. A tensor operator refers to any operation that takes tensors as input and
returns tensors as output. A tensor computational graph is a directed acyclic graph that represents
a sequence of tensor operations. The nodes in the graph represent tensor operators, while the
edges indicate the flow of data (tensors) between these operators. Tensor graph rewriting is a key
optimization employed by tensor compilers, which replaces a subgraph of the input graph with

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

https://github.com/ADAPT-uiuc/TensorRight

TensorRight: Automated Verification of Tensor Graph Rewrites 29:5

another, equivalent subgraph, subject to certain preconditions. This optimization is governed by a
set of rules, called tensor graph rewrite rules.

The algebraic simplifier of the XLA compiler contains hundreds of tensor graph rewrites, executed
during program compilation. Given that XLA consistently executes this simplifier, it is crucial to
ensure the correctness of these rewrite rules. However, currently the rewrite rules are not verified.
Therefore, the developers rely on unit tests and limit the generality of the rules to alleviate concerns
of introducing compiler bugs.

We aim to automatically verify tensor graph rewrites deployed in XLA, which work with tensors
of arbitrary ranks and sizes. Existing verified tensor graph rewrite systems are either not automatic,
lack support for complex XLA-HLO operators and preconditions, or cannot verify rewrite rules in the
unbounded setting . We now demonstrate the importance of automatic and unbounded verification
of tensor graph rewrites and discuss a key insight that enables us to achieve these goals.

2.2 Need for Automatic Verification

The algebraic simplifier in XLA contains complex rewrite rules whose correctness is not intuitive.
Developers often limit the generality of these rewrite rules by imposing preconditions. For instance,
consider the FoldConvInputPad rule shown in Fig. 1.

FoldConvInputPad :
let 𝑆𝑜𝑙 = 𝑆𝑙 + 𝑆𝑙𝑝 in

let 𝑆𝑜ℎ = 𝑆ℎ + 𝑆ℎ𝑝 in

conv(pad(𝑡, 0, 𝑆𝑙𝑝 , 𝑆ℎ𝑝 , 𝑆𝑖𝑝), 𝑡 ′,
𝐵, 𝐹,𝑂,

𝑆𝑙 , 𝑆ℎ, 𝑆𝑖 , 𝑆
′
𝑖
)

=⇒𝑆𝑖𝑝=0 ∧ 𝑆𝑖=1
conv(𝑡, 𝑡 ′, 𝐵, 𝐹,𝑂,

𝑆𝑜𝑙 , 𝑆𝑜ℎ, 𝑆𝑖 , 𝑆
′
𝑖
)

Fig. 1. FoldConvInputPad rule taken

from XLA’s Algebraic Simplifier.

The idea behind the FoldConvInputPad rule is simple:
fold the padding operator into the convolution operator. It
folds the edge padding, i.e., the lower and higher padding (𝑆𝑙𝑝
and 𝑆ℎ𝑝) into the convolution padding (𝑆𝑙 and 𝑆ℎ), but does
not fold the interior padding (𝑆𝑖𝑝) into the base dilation (𝑆𝑖).
The precondition of this rule requires zero interior padding
(𝑆𝑖𝑝 = 0) and a base dilation of one (𝑆𝑖 = 1). The XLA repository
contains the following comment2 on the preconditions:

Edge padding composes with itself in the straight-

forward way, but composing interior padding is

nontrivial, and we cowardly refuse to think about

it. If we see interior padding in either the kPad or

conv, bail if there’s any sort of padding in the other.

Developers restrict the rule because the general case is non-trivial. Existence of an automatic
verification system would allow incremental refinement of the rule and provide counterexamples
during development. As a consequence, it would enable developers to build more general rewrite
rules and be confident that the rewrite rules are valid for arbitrary ranks and sizes. For example,
TensorRight can prove a more general version of the FoldConvInputPad rule with interior
padding, as discussed in §8.3. The generalization involves removing the precondition and computing
the folded padding and dilation attributes as: 𝑆𝑜𝑙 = 𝑆𝑙+𝑆𝑖×𝑆𝑙𝑝 , 𝑆𝑜ℎ = 𝑆ℎ+𝑆𝑖×𝑆ℎ𝑝 , and 𝑆𝑜𝑖 = 𝑆𝑖+𝑆𝑖×𝑆𝑖𝑝 .
This folding of attributes is non-trivial to come up with, but TensorRight can prove the rewrite
rule to be valid. With the aid of TensorRight, we believe that compiler engineers will be able
to quickly iterate through complex rewrite rules and get feedback on their correctness through
counterexamples, thereby increasing productivity.

2.3 Need for Unbounded Verification

We demonstrate with an example that verifying a tensor graph rewrite for a certain rank may not
sufficient to guarantee correctness in the unbounded setting, where input tensors can be of arbitrary
2https://github.com/openxla/xla/blob/ac380bb187abdb3efbbac776141e3a2300209232/xla/service/algebraic_simplifier.cc#
L8764-L8767

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

https://github.com/openxla/xla/blob/ac380bb187abdb3efbbac776141e3a2300209232/xla/service/algebraic_simplifier.cc#L8764-L8767
https://github.com/openxla/xla/blob/ac380bb187abdb3efbbac776141e3a2300209232/xla/service/algebraic_simplifier.cc#L8764-L8767

29:6 Arora et al.

ranks and sizes. Consider the SliceDyUpSlice rule shown in Equation 1, where 𝑆 represents the
shape of the input tensor Y, zero represents a tensor with all values as 0, and 𝑣 represents a vector
with all values as 𝑣 . Other operator inputs like start, end, and stride are called operator attributes.

dyup-slice(slice(Y,0

start

,

⌊
𝑆 + 1
2

⌋end

, 1

stride

), zero

update

, 1

offset

) =⇒ dyup-slice(slice(Y,0

start

, S

end

, 2

stride

), zero

update

, 1

offset

) (1)

The left-hand side (LHS) expression first applies the slice operator, which extracts a sub-tensor
from Y by picking elements from the 0𝑡ℎ index (start) up to the ⌊ 𝑆+12 ⌋

𝑡ℎ index (end) along each axis.
It is then followed by the dyup-slice operator, which zeroes (update) out all the points whose axes
indices are greater than or equal to 1 (offset). The right-hand side (RHS) expression first applies
the slice operator, which extracts a sub-tensor from Y by picking every 2𝑛𝑑 element (stride) along
each axis. It is then followed by the dyup-slice operator, which zeroes out all the points whose axes
indices are greater than or equal to 1.

Rank-1 input Rank-2 input

LHS 0

0

slice dyup-sliceY 0

0

0

0

slice dyup-sliceY

RHS 0

0

slice dyup-sliceY 0

0

0

0

slice dyup-sliceY

Fig. 2. Illustration for SliceDyUpSlice rule depicting various regions in the input tensor for ranks 1 and 2.

The leftmost element is shown as crossed out. The green and blue regions indicate the elements extracted by

slice in LHS and RHS, respectively. The zeroed out region after the dyup-slice is indicated by 0-elements.

Fig. 2 illustrates the rule applied to input tensors of rank 1 and 2. The crossed-out element
corresponds to the point with all indices as 0. We refer to this as the leftmost element. The leftmost
element is left untouched throughout the computation in both LHS and RHS. The green region,
along with the leftmost element, corresponds to the sub-tensor obtained after the slice in LHS. The
blue region, along with the leftmost element, corresponds to the sub-tensor obtained after the slice
in RHS. The zeroed out region after the dyup-slice is represented using 0-elements.
As we can observe for the 1-dimensional case, the final LHS and RHS expressions are equal

since the green and blue regions get zeroed out completely. Meanwhile, for the 2-dimensional case,
the green and blue regions are not completely zeroed out, so the LHS and RHS expressions have
regions that do not match. Therefore, the rule is valid for rank 1 but is invalid for rank 2. In fact,
the rule is invalid for any rank higher than 2. This example demonstrates that verifying the rule for
a certain rank, in this case 1, does not guarantee correctness at other ranks, making it important to
verify the rule for all possible ranks.

2.4 Key Observation

A rewrite rule is valid if the LHS and RHS expressions are equal for input tensors of any rank.
Otherwise, the rule is invalid and would exhibit a counterexample. A counterexample contains a

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

TensorRight: Automated Verification of Tensor Graph Rewrites 29:7

valuation of all the variables in the rule (including tensors and operator attributes) and an access 𝐴
(list of positional indices), such that LHS[𝐴] and RHS[𝐴] do not match.

Verifying a rule for each rank separately is infeasible since there are a denumerable number of
such ranks. However, we make an observation that there exists a sufficient rank 𝑘 , such that if the
rule is valid for rank 𝑘 , then it can be proven valid for any rank greater than 𝑘 . This insight allows
us to avoid verifying the rewrite rule for ranks greater than 𝑘 . A more intuitive way to understand
this is through its contraposition, i.e., if a counterexample exists at a rank greater than 𝑘 , then
a counterexample exists at rank 𝑘 . We demonstrate with the same example rule from §2.3 that
verifying the rule for rank 2 is sufficient to ensure correctness for all higher ranks.

0

0

0

0

0

0

0

0

axis 1

ax
is

0

axis 2

slice dyup-slice

Y LHS[0,0,1]

(a) LHS for rank-3 input

0

0

0

0

0

0

0

0

axis 1

ax
is

0

axis 2

slice dyup-slice

Y RHS[0,0,1]

(b) RHS for rank-3 input

Fig. 3. The SliceDyUpSlice specialized for rank-3 inputs. The LHS and RHS expressions are presented using

2-dimensional cross-sections along axis 2. The access 𝐴3 = [0, 0, 1] is highlighted in LHS and RHS.

Consider the SliceDyUpSlice rule applied to input tensors of rank 3, as shown in Fig. 3. Clearly,
the LHS (Fig. 3a) and RHS (Fig. 3b) have regions (green and blue) that do not match. Therefore
the rule is invalid for rank 3 and exhibits a counterexample. The counterexample would contain
an access 𝐴3 at which LHS and RHS do not match. This access can correspond to any location in
the green and blue regions. Without loss of generality, we consider the case when 𝐴3 = [0, 0, 1],
highlighted as a sketched-out location in Fig. 3a and Fig. 3b.
Given this counterexample at rank 3, we try to construct a counterexample at rank 2, which

would contain an access𝐴2. An obvious counterexample construction involves projecting out one of
the axes. There are 3 choices for the axis to project out: axis 0, axis 1, and axis 2, as shown in Fig. 3.
If we project out axis 2, then the resulting counterexample access 𝐴2 would be [0, 0], but LHS[0, 0]
and RHS[0, 0] have to always match since it is the leftmost element. Therefore, this projection does
not lead to a counterexample. We instead observe that projecting out any of axis 0 or axis 1 results
in a counterexample at rank 2. In fact, any counterexample at rank 3 for the SliceDyUpSlice rule
can be lowered to a counterexample at rank 2. Moreover, it can be shown that any counterexample
at a higher rank can be lowered to a counterexample at rank 2. Therefore, if the SliceDyUpSlice
rule is valid for rank 2, then it is valid for any higher-rank. Note that the same does not hold for
rank 1: given a counterexample at rank 2, we cannot construct a counterexample at rank 1. Based
on these observations, we conclude that 2 is a sufficient rank for this rule and verifying the rule for
ranks 1 and 2 ensures correctness in the unbounded setting.
In TensorRight, we extend these observations to any arbitrary rule by first partitioning the

axes of a tensor into “groups”, where all axes in a group share the same “role” and are treated
uniformly by the operators. We then present an algorithm to compute a sufficient rank for each
group, allowing us to avoid verifying the rule for ranks beyond these sufficient ranks.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

29:8 Arora et al.

3 Overview

Our goal is to automatically verify rewrite rules for arbitrary tensors and operator attributes.
Handling arbitrary tensors requires reasoning about tensor values, axis sizes, and ranks, all of
which could be arbitrary. We illustrate the challenges in representing and verifying rewrite rules
with the help of an example and present TensorRight, that helps us overcome these challenges.

3.1 TensorRight Rewrite Rules

Similar tomany other tensor graph rewrite systems,TensorRight rewrites aremodeled as rewriting
an LHS tensor expression to an RHS tensor expression, subject to certain preconditions. The users
use the constructs provided by TensorRight DSL to write tensor expressions and preconditions.
We use the notation LHS ⇒𝐶 RHS to represent a generic tensor graph rewrite, where LHS and
RHS are tensor expressions and 𝐶 is the precondition under which the rewrite rule is supposedly
correct, which is verified by our system.

Example. Consider the DysliceToSlice rule shown in Equation 2, extracted from XLA’s algebraic
simplifier, which desugars the dy-slice operator to the more efficient slice operator.

dy-slice(Y, 𝐵, 𝐿) =⇒𝐸−𝐵′=𝐿 ∧ 𝑃=1 ∧ 𝐵′=𝐵 slice(Y, 𝐵′, 𝐸, 𝑃) (2)
Fig. 4 depicts the DysliceToSlice rule visually. The dy-slice operator extracts a sub-tensor from
the input tensor Y, where the start-index for each axis is specified in 𝐵 and the length of the slice
along each axis is passed in 𝐿. Meanwhile, the slice operator also extracts a sub-tensor from within a
bounding box in the input tensor Y. The start-indices for the bounding box are specified in 𝐵′, while
the end-indices (exclusive) are specified in 𝐸. 𝑃 specifies the stride for each axis, which determines
the step size between elements in the bounding box.

dy-slice(start, length)

start length

slice(start, end, stride)

start stride

end

Fig. 4. Illustration of dy-slice and slice operators. The

shaded regions denote the operator outputs.

The DysliceToSlice rule is generally not cor-
rect, unless 𝐸 − 𝐵′ (the size of the bounding box
in slice) is equal to 𝐿 (the length in dy-slice). The
other requirements are that slice should skip no
elements, i.e., 𝑃 = 1, and the start indices in slice

and dy-slice must be the same, i.e., 𝐵′ = 𝐵. Since
these are specified in the precondition, the RHS
expression is equivalent to the LHS expression.
Our goal is to represent and verify this rule for
arbitrary tensors and operator attributes. We now
discuss each challenge individually and explain
how our system addresses them.

3.2 Representation in TensorRight DSL

Challenges in representation. First, since the DysliceToSlice rule should be correct for all instan-
tiations of the tensor Y, our system should allow representing a tensor of arbitrary rank and size.
Second, it should allow specifying arbitrary operator attributes like start, end, stride, and length,
to ensure that the rule is correct for all possible operator attributes. It should also allow performing
operations on attributes, like doing arithmetic on end and start while specifying the precondition.
Third, the operators provided by the system should model those that are found in XLA-HLO. Last, it
should allow defining preconditions on a rule (e.g., stride values being 1).

TensorRight Frontend. We present a frontend language in which users can express abstract
rewrite rules along with preconditions. TensorRight will build internal representations (§4) of
rewrite rules from the specification, which can be instantiated to arbitrary ranks.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

TensorRight: Automated Verification of Tensor Graph Rewrites 29:9

1 rule = do
2 rcls <- newRClass "rcls"
3 [size, start, start', length, end, stride] <-
4 newMaps ["size", "start", "start'" "length", "end", "stride"] rcls
5 Y <- newTensor @TensorInt "Y" [rcls --> size]
6 lhs <- dynamicSlice Y [rcls --> start] [rcls --> length]
7 rhs <- slice Y [rcls --> start'] [rcls --> end] [rcls --> stride]
8 precondition [end, start', length] $ \[end, start', length] -> end - start' .== length
9 precondition [stride] $ \[stride] -> stride .== 1
10 precondition [start, start'] $ \[start, start'] -> start' .== start
11 rewrite "DynamicSlice(Y) => Slice(Y)" lhs rhs
12
13 verifyDSL rule

Listing 1. The DysliceToSlice rule represented in TensorRight DSL.

Listing 1 illustrates the DysliceToSlice rule implemented in the TensorRight Frontend. Instead
of using fixed-rank tensors, the tensors in TensorRight DSL are represented with aggregated-axes,
that can be instantiated to any number of axes. All axes in an aggregated-axis share the same “role”
and are treated uniformly by all the operators, allowing us to reason about an unbounded number
of axes compactly. There might be multiple aggregated-axes in a rule to capture different roles of
axes. Some of them must be instantiated to the same rank in a correct rule and this constraint is
represented by a rank class (RClass) as discussed in §6.

On line 2 in Listing 1, we declare a newRClass andwe refer to it by rcls. InTensorRightDSL, we
can refer to the aggregated-axis with the RClass itself, if an RClass has exactly one aggregated-axis.
On lines 3-4, we declare multiple abstract-maps on rcls. These abstract-maps can be instantiated
to concrete-maps, whose domain is the same as the axes in the aggregated-axis represented by rcls.
When instantiated, they map axes in rcls to symbolic values, which can represent axes sizes, start
indices, end indices etc. On line 5, we declare a new tensor containing integer elements, with the
shape {rcls ↦→ size}. Similarly, the created tensor can also be instantiated with any number of
axes (all of which behave in the same way) and symbolic sizes. We then construct the LHS and RHS
expressions on lines 6 and 7, respectively. On line 8, we specify the precondition that the difference
of the end and start indices should be equal to the length. On line 9, we specify that the stride
values should be 1 for all axes. On line 10, we specify that the start indices should be same on both
sides. Finally, we construct the rewrite rule on line 11.

This example demonstrates how we can represent tensors with arbitrary rank and sizes, specify
arbitrary operator attributes, construct tensor expressions, and specify complex preconditions in
TensorRightDSL. We now discuss our verification methodology built on top of this representation.

3.3 Verification

Frontend

Rewrite Rules in
TensorRight

Type/RClass Check

Aggregated
Representation

Bound Inference
{rclass0: 3, ...}

Analysis

Instantiation

Instance0
{rclass0: 1, ...}

Instance1
{rclass0: 1, ...}

Instance2
{rclass0: 2, ...}

Symbolic
Evaluation

SMT-based
Verification

All
Verified? Valid

Invalid

Induction

Bounded Verification

Fig. 5. TensorRight Overview and Workflow.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

29:10 Arora et al.

Fig. 5 describes our approach to verifying rules with tensors of arbitrary rank and sizes. With the
aggregated representation created in §3.2, the system infers a bound for each RClass and instantiates
them to all the ranks within the bound. Each instance can then be proven with symbolic evaluation
by SMT solvers. This is based on a crucial theorem (§6.3) that for all RClasses in a rule, there exists
a mechanically derivable bound on the ranks, such that proving all instances within the bound
implies that the rule is correct for all ranks. With this bound, we convert the unbounded-verification
proof obligation to a finite number of bounded-verification proof obligations. The correctness of the
rule with ranks beyond the bound is then established with induction.

1 ruleLowered = do
2 # Instiate rcls to a concrete set

3 S○ <- rcls

4 # Define concrete maps on rcls

5 size <- Map S○ SymInteger

6 # Maps for other attributes like start, length
7 Y <- newTensor @TensorInt "tensor" [rcls --> size]
8 lhsSym <- [[...]] # Symbolic Representation of LHS
9 rhsSym <- [[...]] # Symbolic Representation of RHS
10 pre <- ... # Precondition of the rule
11 # Axes and Shape Checks
12 assert $ lhsShape .== rhsShape
13 A <- generalAccess(lhs, rhs)
14 verify $ pre && lhsValid -> lhsSym[A] .== rhsSym[A]

Listing 2. Frontend Rewrite Rule lowered to our core syntax.

On line 13 in Listing 1, we call
verifyDSL on the constructed rule,
which is our main verification rou-
tine. First, it infers a bound for every
RClass in the rule. The bound infer-
ence algorithm collects the number
of unique boolean conditions and ten-
sor accesses in the rewrite rule. In
this case, there is only one RClass,
no boolean conditions, and a single
unique access to the tensor. We infer
the bound to be 1. This means that if
the rule is correct for all rank-1 ten-
sors, then the rule is correct for ten-
sors containing any number of axes.
We discuss these conditions and ac-
cesses in detail in §6.
Second, it specializes the rule for these ranks, ending up with fixed-rank but arbitrary-sized

tensors. Listing 2 shows some details of the lowered code in our core TensorRight DSL. On line 3,
we instantiate rclswith a known-rank (1 in this case) and get the set of concrete-axes in S○. On line
5, we declare concrete-maps corresponding to the abstract maps in Listing 1. These maps now have
a concrete-domain, same as S○. In lines 7-10, we create concrete-ranked input tensors, generate
symbolic representations of LHS and RHS with symbolic evaluation, and specify preconditions.
We make an initial assertion on line 12 that both expressions have the same symbolic shape. One
line 14, we express one of the main verification conditions, i.e., the equality between LHS and RHS

expressions under a general access A, which is discharged to an SMT solver. The solver decides
that the proof obligation is a tautology and the rule is deemed verified in the unbounded setting.
The example demonstrates how we take the abstract specification of a rewrite rule expressed

in TensorRight Frontend, infer a bound for each RClass, instantiate every aggregated-axis, and
discharge bounded-verification proof obligations. We describe the TensorRight DSL in §4, the
denotational semantics in §5, and our verification methodology in detail in §6.

4 Rewrite Rule Representation

In this section, we show our rank- and size-polymorphic rewrite rule representation constructed by
the TensorRight Frontend introduced in §3.2. We take a set of operators from XLA-HLO and model
them in TensorRight. We show a subset of the modeled operators in Fig. 6 for discussion (more
modeled operators can be found in Appendix A). We can extend the set to other layout-insensitive
operators, whose semantics do not depend on the particular physical layout of the operands. Some
operators that do not fall into this category include reshape and bitcast.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

TensorRight: Automated Verification of Tensor Graph Rewrites 29:11

The key distinction of our DSL from XLA-HLO is that we group axes into aggregated-axes, where
all the axes in the same group share the same “role” and are treated uniformly by the operators.
This allows us to describe rewrite rules with tensors containing any number of axes in a compact
manner. In §6, we extend this representation by tagging the aggregated-axes with rank classes to
help us with the instantiation of aggregated-axes into concrete-axes for verification purposes.

4.1 Named Axes

𝜏 ≔ Int | Bool | Real Type
𝑎 ∈ A Named-axes
𝑥 ∈ X = P(A) Aggregated-axes
𝑓 ∈ list[Int] → Int Map function
𝑚 ≔ M | fmap(𝑓 ,𝑚+) Maps
𝑋 ∈ P(X) Set of aggregated-axes
𝑆, 𝐼 ∈ 𝑚X Shapes and indices
𝑅 ∈ XX Relabel maps
𝑣 ≔ 𝑖 : Int | 𝑏 : Bool | 𝑟 : Real Scalar literal
𝑒 ≔ T (Literal) Tensor expression

| V (Variable)
| const(𝑣, 𝑆)
| iota(𝑆, 𝑥)
| expand(𝑒, 𝑆)
| binary(⊕, 𝑒𝑙 , 𝑒𝑟)
| pad(𝑒, 𝑣, 𝑆𝑙 , 𝑆ℎ, 𝑆𝑖)
| slice(𝑒, 𝐼𝑠 , 𝐼𝑒 , 𝐼𝑝)
| dy-slice(𝑒, 𝐼 , 𝑆)
| dyup-slice(𝑒, 𝑒𝑢, 𝐼)
| reduce(⊕, 𝑒, 𝑋)
| relabel(𝑒, 𝑅)
| concat(𝑒𝑙 , 𝑒ℎ, 𝑥)

𝑔 ∈ list[Int] → Bool Predicate function
𝑃 ≔ fold(𝑔,𝑚+) Precondition
𝑅𝑢𝑙𝑒 ≔ 𝑒𝑙ℎ𝑠 ⇒𝑃∗ 𝑒𝑟ℎ𝑠 Rewrite rule

Fig. 6. Core rewrite rule representation with selected operators.

Following named-tensors in Py-
Torch [13] and named-axes
in JAX [4], we give explicit
names to the axes of a tensor
and call them named-axes. We
can treat the named-axes of
a tensor as an unordered set
for layout-insensitive operators
and express tensor shapes as
mappings from names to sizes.
For example, we may give the
names ℎ and 𝑣 to the horizontal
and vertical axes respectively
of a 2×3 tensor 𝑡 and the shape
of this tensor would be themap-
ping {ℎ ↦→ 3, 𝑣 ↦→ 2}. Such
a tensor can be accessed with
an access map, which is a map-
ping from named-axes to in-
dices. We then have 𝑡 [{ℎ ↦→
1, 𝑣 ↦→ 1}] = 𝑤 , given the
domain of the access map is
exactly the set of the named-
axes, there’s no out-of-bounds
access, and 𝑤 is the value at
that access.
An operator that works on

multiple tensors will need to
match them by the named-axes, as shown in the following examples.

• binary(+, 𝑡1, 𝑡2), where 𝑡1, 𝑡2 have the shapes {𝑎1 ↦→ 2, 𝑎2 ↦→ 3} and {𝑎1 ↦→ 2, 𝑎2 ↦→ 3}, respec-
tively. The two shapes match as they have the same set of named-axes and the corresponding
named-axes have the same sizes.
• dot(𝑡1, 𝑡2, {𝑎2, 𝑎3}, {𝑎4}), where the shapes of 𝑡1 and 𝑡2 are {𝑎1 ↦→ 2, 𝑎2 ↦→ 3, 𝑎3 ↦→ 4, 𝑎4 ↦→ 5}
and {𝑎5 ↦→ 6, 𝑎2 ↦→ 3, 𝑎3 ↦→ 4, 𝑎4 ↦→ 5}, respectively. For the dot operator, we need to match
the contraction and batch axes, in this case {𝑎2, 𝑎3} and {𝑎4}, respectively. The resulting
tensor has the shape {𝑎1 ↦→ 2, 𝑎4 ↦→ 5, 𝑎5 ↦→ 6}.

Note that sometimes, we need to rename the axes to avoid name clashes. For example, with the
dot operator, if the two tensors share some spatial named-axes (neither contraction nor batch axes),
we need to rename them before applying the operator to make sure that the named-axes in the
resulting tensor are unique.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

29:12 Arora et al.

4.2 Aggregated Axes

As we’ve shown in the dot example in §4.1, we have matched some set of axes between the two
tensors. This partitions the named-axes in a tensor into sets of axes that have the same “role” in
the expression. For example, 𝑎2 and 𝑎3 have the same roles as contraction axes. Based on this
observation, we introduce aggregated-axes, which is a set of named-axes.
We can partition the set of named-axes of a tensor into disjoint aggregated-axes and write

expressions directly using uninterpreted aggregated-axes. The aggregated-axes can be instantiated
to some concrete set of named-axes, and the number of instantiated named-axes is called the rank
of an aggregated-axis. This allows us to write expressions with an arbitrary number of named-axes
in a uniform and simple way.

For example, in the expression dot(𝑡1, 𝑡2, {𝑥2, 𝑥3}, {𝑥4}), if we assume that the set of named-axes
in 𝑡1 and 𝑡2 are 𝑥1 ∪ 𝑥2 ∪ 𝑥3 ∪ 𝑥4 and 𝑥5 ∪ 𝑥2 ∪ 𝑥3 ∪ 𝑥4, respectively, then the resulting tensor has
{𝑥1, 𝑥4, 𝑥5} as the set of aggregated-axes. It’s easy to see that we can get back the dot example shown
in §4.1 by instantiating all aggregated-axes to singleton sets. This instantiation is not arbitrary, and
we elaborate on how to specify the constraints on the instantiations with rank classes in §6.

We can then lift the tensor semantics to aggregated semantics: shapes or indices can be expressed
with, or instantiated from aggregated-axes. Instead of being a mapping from named-axes to integers,
we now need a nested mapping that maps aggregated-axes to another map from names in the
aggregated-axes to integers. As a convention, we will refer to the inner mappings as a map and the
outer mapping as an aggregated-map. For example, the following is valid aggregated-map:

{{𝑖1, 𝑖2} ↦→ {𝑖1 ↦→ 2, 𝑖2 ↦→ 3}, {𝑖3} ↦→ {𝑖3 ↦→ 4}}

Definition 1. An aggregated-map 𝑀 is valid if it is a nested mapping from aggregated-axes to
maps from named-axes to integers such that:
• ∀𝑥1, 𝑥2 ∈ dom(𝑀), 𝑥1 ≠ 𝑥2 → 𝑥1 ∩ 𝑥2 = ∅, and
• ∀𝑥 ∈ dom(𝑀), dom(𝑀 [𝑥]) = 𝑥 .

Note that 𝑀 [𝑥] represents the value mapped to 𝑥 in 𝑀 . Shape and indices are aliases for
aggregated-maps in specific contexts and they have their additional validity conditions, depending
on the context. Here, we give the validity conditions for tensor shapes and access indices:

Definition 2. A valid tensor shape 𝑆 is a valid aggregated-map, such that ∀𝑥 ∈ dom(𝑆),∀𝑎 ∈
𝑥, 𝑆 [𝑥] [𝑎] ≥ 0. The shape of a tensor 𝑡 is denoted as Shape(𝑡).

Definition 3. A valid access 𝐴 (used for accessing tensors) with respect to a valid tensor shape 𝑆 ,
is a valid aggregated-map such that
• dom(𝐴) = dom(𝑆), and
• ∀𝑥 ∈ dom(𝐴),∀𝑎 ∈ 𝑥, 0 ≤ 𝐴[𝑥] [𝑎] < 𝑆 [𝑥] [𝑎].

The set of all valid accesses given a tensor shape 𝑆 , is denoted by Access(𝑆). A tensor 𝑡 is then
viewed as a mapping from the set Access(Shape(𝑡)) to elements, and the element at the access 𝐴 is
denoted as 𝑡 [𝐴]. The set of all aggregated-axes of a tensor 𝑡 is denoted as Axes(𝑡).

Operator attributes are also expressed using aggregated-maps, with each operator having its own
validity conditions. For example, the pseudo operator pad-low, which only does low-padding, can
pad a tensorwith 𝑙1, followed by 𝑙2, for the axes in𝑥1 using the expression: pad-low(pad-low(𝑡, {𝑥1 ↦→
𝑙1}), {𝑥1 ↦→ 𝑙2}). The validity condition for pad-low allows padding with negative shapes but disal-
lows creating a tensor with a negative shape (more details in §5). Assuming 𝑡 has the shape 𝑠0 in the
aggregated-axis 𝑥1, the resulting shape in the pad-low expression will be 𝑠0 + 𝑙1 + 𝑙2. Note that we
are doing an element-wise combination of maps, where the maps must have the same named-axes

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

TensorRight: Automated Verification of Tensor Graph Rewrites 29:13

and the resulting map contains the sum of the corresponding axis sizes. Element-wise combination
(fmap) is the only allowed operation on the maps to combine them, as we define aggregated-axes
as set of named axes that have the same “role” in the expression. Note that we may also combine a
map with scalars by lifting the scalar to a constant map.

4.3 Rewrite Rule

Similar to many other tensor graph rewrite systems, TensorRightmodels rewrite rules as rewriting
an LHS expression to anRHS expression, subject to certain preconditions. See the following example:

pad-low(pad-low(𝑡, 0, {𝑥1 ↦→ 𝑙1}), 0, {𝑥1 ↦→ 𝑙2}) ⇒𝑙1≥0 ∧ 𝑙2≥0 pad-low(𝑡, 0, {𝑥1 ↦→ 𝑙1 + 𝑙2})

In this rule, we aggregated all the named-axes in the tensor 𝑡 into the aggregated-axis 𝑥1. 𝑙1 and 𝑙2
are two maps from named-axes in 𝑥1 to padding sizes. In the RHS, the two maps are combined in
an element-wise way. Similarly, our preconditions are predicates lifted to operate on the maps in
an element-wise way. The condition 𝑙1 ≥ 0 here means that the padding sizes in 𝑙1 must be greater
than or equal to 0 for all named-axes.

5 Denotational Semantics

We give the denotational semantics of the XLA-HLO operators in Fig. 7. We will use denotational
semantics notations for deriving a bound on the ranks, but note that since our semantics map from
our language to computable tensor objects, we can easily derive a big-step operational semantics
and perform symbolic evaluation. Due to space limitations, we will only show the semantics of
some selected operators. More operators are available in Appendix A. They are usually simple or
can be expressed using existing operators or the techniques introduced here.
The domain of our denotational semantics are tensors, which map accesses to elements. The

elements can be boolean, integers, or real numbers. There is also a special type of element called a
Reduction Element, denoted as Red⊕

𝐼0,𝐼1, · · · 𝑓 ({dom(𝐼0) ↦→ 𝐼0, dom(𝐼1) ↦→ 𝐼1, · · · }). Here, ⊕ is a binary
operator and 𝐼0, 𝐼1, · · · are called reduction indices. We may sometimes omit the indices and write
Red

⊕
𝑋
𝑓 (𝑋), where 𝑋 = {dom(𝐼0), dom(𝐼1), · · · } is the set of aggregated-axes being reduced.

The introduction of a reduction element is based on pragmatic reasons. As the sizes of reduced
axes are unbounded, we cannot expand the reduction to sum all the values being reduced. Thus, we
leave the sum uninterpreted and provide special treatment for such elements during verification.

Fig. 7 shows the denotational semantics of some selected operators. We overload some functions
for convenience: Shape(𝑒) means Shape(⟦𝑒⟧), Access(𝑒) means Access(Shape(𝑒)), and Axes(𝑒)
means Axes(⟦𝑒⟧). We also introduce some helper functions on valid aggregated-maps. Given a
comparison operator ⊙ and a binary operator ⊕, we lift them to aggregated-maps as

𝑀1 ⊙ 𝑀2 =
∧

𝑥 ∈dom(𝑀1)

∧
𝑎∈𝑥

𝑀1 [𝑥] [𝑎] ⊙ 𝑀2 [𝑥] [𝑎]

𝑀1 ⊕ 𝑀2 = {𝑥 ↦→ {𝑎 ↦→ 𝑀1 [𝑥] [𝑎] ⊕ 𝑀2 [𝑥] [𝑎] | 𝑎 ∈ 𝑀1 [𝑥]} | 𝑥 ∈ dom(𝑀1)}

All these binary operations implicitly introduce the assumption that the two aggregated-maps
are valid and the domain of the two aggregated-maps are the same. We will omit these from our
rules. Sometimes, we may overload the notations to operate with constants. This is treated as
operating with a nested map where the inner map are constant maps.
In our rules, we introduce bindings with let 𝑛𝑎𝑚𝑒 = · · · notation. Some rules like Iota and

Concat require that an aggregated-axis is singleton. In these rules, we use the syntax let {𝑎} = 𝑥 to
say that 𝑥 is singleton and bind the singleton element in 𝑥 to 𝑎. We use the notation 𝑆 |𝐾 to denote
the mapping restriction of 𝑆 to 𝐾 , where 𝑆 is any map and 𝐾 is a subset of keys from 𝑆 .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

29:14 Arora et al.

⟦const(𝑣, 𝑆)⟧ = {𝐴 ↦→ 𝑣 | 𝐴 ∈ Access(𝑆) }
Const

let {𝑎} = 𝑥 𝑥 ∈ dom(𝑆)
⟦iota(𝑆, 𝑥)⟧ = {𝐴 ↦→ 𝐴 [𝑥] [𝑎] | 𝐴 ∈ Access(𝑆) }

Iota

dom(𝑆) ∩ Axes(𝑒) = ∅
⟦expand(𝑒, 𝑆)⟧ = {𝐴 ↦→ ⟦𝑒⟧ [𝐴 |

Axes(𝑒)] | 𝐴 ∈ Access(Shape(𝑒) ∪ 𝑆) }
Expand

Shape(𝑒) = Shape(𝑒′)
⟦binary(⊕, 𝑒, 𝑒′)⟧ = {𝐴 ↦→ ⟦𝑒⟧ [𝐴] ⊕ ⟦𝑒′⟧ [𝐴] | 𝐴 ∈ Access(𝑒) }

BinOp

let 𝑆 = Shape(𝑒) let 𝑆′ = 𝑆 + 𝑆𝑙 ≥ 0 let 𝑛𝑜𝑡-𝑝𝑎𝑑 = 𝜆𝐴.𝐴 ≥ 𝑆𝑙
⟦pad-low(𝑒, 𝑣, 𝑆𝑙)⟧ = {𝐴 ↦→ if 𝑛𝑜𝑡 -𝑝𝑎𝑑 (𝐴) then ⟦𝑒⟧ [𝐴 − 𝑆𝑙] else 𝑣 | 𝐴 ∈ Access(𝑆′) }

PadLow

0 ≤ 𝐼𝑠 ≤ 𝐼𝑒 ≤ Shape(𝑒) 𝐼𝑝 > 0�
slice(𝑒, 𝐼𝑠 , 𝐼𝑒 , 𝐼𝑝)

�
= {𝐴 ↦→ ⟦𝑒⟧ [𝐼𝑠 +𝐴 × 𝐼𝑝] | 𝐴 ∈ Access(

⌈
𝐼𝑒−𝐼𝑠
𝐼𝑝

⌉
) }

Slice

𝐼 + 𝑆 ≤ Shape(𝑒) 𝑆 > 0 𝐼 ≥ 0
dy-slice(𝑒, 𝐼 , 𝑆) = {𝐴 ↦→ ⟦𝑒⟧ [𝐴 + 𝐼] | 𝐴 ∈ Access(𝑆) }

DySlice

let 𝑆𝑢 = Shape(𝑒𝑢) 𝐼 + 𝑆𝑢 ≤ Shape(𝑒) 𝑆𝑢 > 0 𝐼 ≥ 0
let 𝑎𝑐𝑐 = 𝜆𝐴.if 𝐴 ≥ 𝐼 ∧𝐴 < 𝐼 + 𝑆𝑢 then ⟦𝑒𝑢⟧ [𝐴 − 𝐼] else ⟦𝑒⟧ [𝐴]

dyup-slice(𝑒, 𝑒𝑢 , 𝐼) = {𝐴 ↦→ 𝑎𝑐𝑐 (𝐴) | 𝐴 ∈ Access(𝑒) }
DyUpdateSlice

let 𝑆 = Shape(𝑒) let {𝑥0 · · ·𝑥𝑘 } = 𝑋 ⊆ Axes(𝑒)
let 𝑎𝑐𝑐 = 𝜆𝐴.Red⊕

𝐼0,··· ,𝐼𝑘
⟦𝑒⟧ [{𝑥0 ↦→ 𝐼0, · · · , 𝑥𝑘 ↦→ 𝐼𝑘 } ∪𝐴]

⟦reduce(⊕, 𝑒, 𝑋)⟧ = {𝐴 ↦→ 𝑎𝑐𝑐 (𝐴) | 𝐴 ∈ Access(𝑆 \ 𝑆 |𝑋) }
Reduce

∀𝑥1, 𝑥2 ∈ dom(𝑅), 𝑥1 ≠ 𝑥2 → 𝑅 [𝑥1] ≠ 𝑅 [𝑥2] dom(𝑅) = Axes(𝑒)
⟦relabel(𝑒, 𝑅)⟧ = {𝐴 ↦→ ⟦𝑒⟧ [𝐴 ◦ 𝑅] | 𝐴 ∈ Access(𝑆 ◦ 𝑅−1) }

Relabel

let {𝑎} = 𝑥 𝑥 ∈ Axes(𝑒) 𝑥 ∈ Axes(𝑒′) let 𝑆 = Shape(𝑒) let 𝑆′ = Shape(𝑒′)
∀𝑥′ ∈ Axes(𝑒), 𝑥′ ≠ 𝑥 → 𝑆 [𝑥′] = 𝑆′ [𝑥′]

let 𝑆′′ = {𝑥′ ↦→ if 𝑥′ = 𝑥 then 𝑆′ [𝑥] else {𝑎′ ↦→ 0 | 𝑎′ ∈ 𝑥′ } | 𝑥′ ∈ Axes(𝑒) }
let 𝑎𝑐𝑐 = 𝜆𝐴.if 𝐴 ≥ 𝑆′′ then ⟦𝑒′⟧ [𝐴 − 𝑆′′] else ⟦𝑒⟧ [𝐴]
concat(𝑒, 𝑒′, 𝑥) = {𝐴 ↦→ 𝑎𝑐𝑐 (𝐴) | 𝐴 ∈ Access(𝑆 + 𝑆′′) }

Concat

Fig. 7. Denotational Semantics of some core operators.

Tensor operators. Next, we explain the semantics of some select operators:

• Const: The const operator outputs a tensor with the desired shape 𝑆 , with all accesses being
mapped to the same constant element 𝑣 .
• Iota: The iota operator projects the access-index for a specific singleton aggregated-axis 𝑥 .
The resulting tensor holds values starting at 0, incrementing by 1 along that axis.
• Expand: The expand operator introduces new aggregated-axes to a tensor by duplicating
the data in the tensor. It takes a shape containing the sizes of the new axes and the resulting
tensor is accessed as if we are accessing the input tensor after removing these new axes from
the access. The set of new axes must be disjoint from the original set of axes.
Fig. 8a demonstrates the expand operator with an example. The input tensor contains two
aggregated-axes 𝑥ℎ and 𝑥𝑤 , each instantiated with 1 named-axes. We refer to the correspond-
ing named-axes by ℎ and 𝑤 , respectively. The input shape is {{ℎ} ↦→ {ℎ ↦→ 5}, {𝑤} ↦→
{𝑤 ↦→ 5}}. We expand it by adding a new aggregated-axis 𝑥𝑑 , containing 1 named-axis

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

TensorRight: Automated Verification of Tensor Graph Rewrites 29:15

𝑑 . The resulting tensor duplicates data across this new named-axis and has a shape of
{{ℎ} ↦→ {ℎ ↦→ 5}, {𝑤} ↦→ {𝑤 ↦→ 5}, {𝑑} ↦→ {𝑑 ↦→ 3}}.
• BinOp: The binary operator performs an element-wise operation on two identically-shaped
tensors.
• PadLow: We present a restricted version of the pad operator, pad-low, which pads only on
the low-ends of each axis. The semantics test whether the access is in the padded region. If
so, return the padded value, or access the original tensor, offset by the padding shape.
Fig. 8b demonstrates the pad-low operator with an example. The input tensor contains two
aggregated-axes 𝑥ℎ and 𝑥𝑤 , each instantiated with 1 named-axes. We refer to the correspond-
ing named-axes by ℎ and𝑤 , respectively. The input shape is {{ℎ} ↦→ {ℎ ↦→ 4}, {𝑤} ↦→ {𝑤 ↦→
4}}. We perform zero-padding on ℎ and 𝑤 with padding attributes of 2 and 1 respectively.
The zero-padding values are all present at the lower-ends of the axes. The resulting tensor a
shape of {{ℎ} ↦→ {ℎ ↦→ 6}, {𝑤} ↦→ {𝑤 ↦→ 5}}.
• Slice: The slice operator extracts a sub-tensor, which has the same named-axes as the input
tensor and contains the values inside a bounding box within the input. The indices for the
bounding box are given by the starting indices 𝐼𝑠 , limit indices 𝐼𝑒 (exclusive), and the positive
strides 𝐼𝑝 . The slice picks every 𝐼𝑝 [𝑥] [𝑎] element along each named-axis 𝑎 ∈ 𝑥 ∈ dom(𝐼𝑝).
• DySlice: The dy-slice operator extracts a sub-tensor from the input tensor. The indices for
the bounding box are given by the starting indices 𝐼 and size of the bounding box 𝑆 . The sizes
must be positive and should not cause out-of-bounds accesses. Note that this is different from
the XLA semantics, where our starting indices are not represented as a tensor, but as a map.
We are then only able to express rewriting rules where the indices are used in an opaque
way, or as a constant, or computed with element-wise operations, e.g., binary. We found that
this change does not affect the effectiveness of TensorRight for verification purposes, and
our approximation is able to express all rewrite rules involving dy-slice.
• DyUpdateSlice: The dyup-slice operator generates a result with a slice overwritten by 𝑒𝑢 ,
starting at indices 𝐼 . Our dyup-slice operator follows the same approximation as dy-slice.
• Reduce: The reduce operator takes a tensor and a set of aggregated-axes 𝑋 as inputs, then
returns a tensor mapping to uninterpreted reduction elements as the result. The resulting
tensor has the shape 𝑆 \ 𝑆 |𝑋 , essentially removing all the aggregated-axes in 𝑋 . We extend
the semantics of reduce to make verification easier in Appendix A.
• Relabel: In TensorRight, as we take an unordered view of the axes, we no longer need
transpose. However, we still need to re-match the axes, for example, when we want to
describe some expressions such as 𝑡 + transpose(𝑡). The relabel operator is introduced for this
axes-matching operation. It renames aggregated-axes and does not change tensor contents.
• Concat: The concat operator is another example where we introduce the singleton constraint
on an aggregated-axis. The two tensors should have the same shape on other axes. For the
concatenating axis, the resulting size will be the sum of the operand sizes. The resulting
tensor will then compute which operand tensor the access belongs to and perform the access.

Handling reduction elements. In real-world XLA rewrite rules, the reduction might not always
be the top-level operation and a reduction of a tensor may be performed in several steps. For
instance, in the rewrite rule reduce(concat(reduce(A), reduce(B))) = reduce(concat(A,B)), the
reduction in LHS is done in two steps. To handle rules like this, we provide a limited set of arithmetic
rules for reduction elements in Fig. 9. If no known rule applies, TensorRight will report an error,
indicating that the rule isn’t supported. The equivalence of two reduction elements is currently
verified by a stronger condition, where we view them as sets and verify that there is a one-one
mapping between them. Note that not all correct rules meet the strengthened condition, but we

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

29:16 Arora et al.

w

h

d

{d → 3}

expand

(a) expand: {𝑑 → 3} denotes the expansion shape

0

0

0

0

0 0 0 0 0

0 0 0 0 0w

h pad-low

0, {h → 2, w → 1}

(b) pad-low: {ℎ ↦→ 2,𝑤 ↦→ 1} denotes the padding
attributes and 0 denotes the padding value

Fig. 8. Illustration of (a) expand and (b) pad-low operators. ℎ,𝑤 , and 𝑑 denote named-axes.

find that it covers most rewrite rules with reductions. Additionally, user-provided hints are needed
for verifying the set equivalence, as discussed in §6.5. This is the only manual hint from the user
during our verification. Providing better mechanisms for handling reductions is a future work.

𝑣 ∗ Red+𝑋 𝑓 (𝑋) → Red
+
𝑋 𝑣 ∗ 𝑓 (𝑋) Red

+
𝑋 𝑓 (𝑋) ∗ Red+𝑌𝑔(𝑌) → Red

+
𝑋,𝑌 𝑓 (𝑋) ∗ 𝑔(𝑌)

Red
⊕
𝑋
(Red⊕

𝑌
𝑓 (𝑋,𝑌)) → Red

⊕
𝑋,𝑌

𝑓 (𝑋,𝑌)

Fig. 9. Rules on reduction elements.

6 Verification of Rewrite Rules

After defining the representation of rewrite rules in §4 and its denotational semantics in §5, this
section describes how TensorRight verifies the rewrite rules given the semantics. We will first
overview our verification approach, which is based on 𝑘-induction [36], then provide proof sketches
for our induction steps.

6.1 Overview of the Verification

To prove that a rewrite rule is correct, intuitively, we need to verify that the two expressions have
the same denotation, possibly under some assumptions. Given a rule LHS⇒𝐶 RHS, we prove that

∀𝑣 ∈ 𝑣𝑎𝑟𝑠,𝐶 ∧ valid-expr(LHS) → ⟦LHS⟧ = ⟦RHS⟧ (3)

Here, 𝑣𝑎𝑟𝑠 is the set of all variables appearing in the rule. It contains all possible tensor variables
and operator attributes, such as slice attributes and expand shapes. Note that we only consider the
case where the term prior to rewriting is valid, i.e., when LHS is valid.

The challenge here is that a rewrite rule can usually be applied to tensors with arbitrary number
of axes and arbitrary sizes in each axis. To handle arbitrary number of axes, as discussed in §4, we
express rewrite rules with a finite number of aggregated-axes and each of them may be instantiated
to arbitrary ranks. The equivalence of the two expressions then boils down to verifying that they
are equivalent under all valid instantiations 𝐼 , where the LHS is valid:∧
𝐼

valid(𝐼) where valid(𝐼) = ∀𝑣 ∈ 𝑣𝑎𝑟𝑠 (𝐼),𝐶 ∧ valid-expr(LHS(𝐼)) → ⟦LHS(𝐼)⟧ = ⟦RHS(𝐼)⟧

For a given instantiation, we now have concrete ranks but unbounded sizes. To handle arbitrary
sizes, we model each tensor as an uninterpreted function and use unbounded integers to model
the indices and sizes in each named-axis. This is supported natively by SMT solvers with good
performance. We then leverage a symbolic execution approach to convert the rewrite rule into a
set of constraints. We call this a bounded-verification proof obligation, which is used to verify a
given instantiation of our rewrite rule. This is described in detail in §6.4.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

TensorRight: Automated Verification of Tensor Graph Rewrites 29:17

We still need to answer two questions: (1) what does it mean for an instantiation to be valid
and (2) how to verify the rule for a possibly infinite number of instantiations? Our approach
to these questions is to introduce a new concept called rank class (RClass). A rank class is a
(required) property of an aggregated-axis, such that all the aggregated-axes with the same RClass
are always instantiated to the same rank. An instantiation of a rewrite rule can then be expressed
as instantiating these RClasses to some rank. We then derive a sufficient rank for each RClass, such
that any instantiation with higher ranks could be proven inductively, given that we have verified
all instances within the rank. This approach follows the 𝑘-induction technique [36].

To show the intuition for an RClass, consider the rewrite rule (𝐴 +𝐴⊤)⊤ = 𝐴 +𝐴⊤, where 𝑡 has
the shape {𝑥1 ↦→ 𝑚1, 𝑥2 ↦→ 𝑚2}. Note that transpose is a no-op with unordered axes semantics,
and relabel is provided for renaming and matching axes.

relabel(binary(+, 𝑡, relabel(𝑡, {𝑥1 ↦→ 𝑥2, 𝑥2 ↦→ 𝑥1})), {𝑥1 ↦→ 𝑥2, 𝑥2 ↦→ 𝑥1}) ⇒
binary(+, 𝑡, relabel(𝑡, {𝑥1 ↦→ 𝑥2, 𝑥2 ↦→ 𝑥1}))

It is easy to see that we must instantiate 𝑥1, 𝑥2 with the same number of axes to make sure that
both LHS and RHS are valid. In other words, 𝑥1 and 𝑥2 must have the same rank, in which case we
say that these two aggregated axes are in the same rank class (RClass) and the RClass constraints
the possible instantiations. When we instantiate a rule with relabeling, we also need to be able to
establish a consistent mapping between the named-axes of 𝑥1 and 𝑥2. These facts are expressed in
the following two definitions.

Definition 4. A rank class (RClass) 𝑐 is a property of a family of aggregated-axes, such that
• Each aggregated-axis 𝑥 is in exactly one RClass 𝑐 , written as 𝑥 : 𝑐 .
• For all 𝑥0 : 𝑐 , 𝑥1 : 𝑐 , 𝑥0 and 𝑥1 are instantiated to the same rank 𝑟 in a valid instantiation. In
such an instantiation, the rank of the RClass 𝑐 is defined to be 𝑟 .

Definition 5. An RClass 𝑐 provides a canonical bijection mapping between each pair of the
aggregated axes associated with it. We denote such a mapping that maps from the named axes in
𝑥0 : 𝑐 to 𝑥1 : 𝑐 , asMapAxes(𝑐, 𝑥0, 𝑥1). The canonical mapping must satisfy:
• MapAxes(𝑐, 𝑥0, 𝑥1) ◦MapAxes(𝑐, 𝑥1, 𝑥0) = id, and
• MapAxes(𝑐, 𝑥1, 𝑥2) ◦MapAxes(𝑐, 𝑥0, 𝑥1) = MapAxes(𝑑, 𝑥0, 𝑥2).

where ◦ refers to function composition. Such a mapping can be trivially constructed during
the instantiation as the aggregated axes of the same rank class are instantiated to the same rank.
In practice, without loss of generality, to instantiate an aggregated axis 𝑥𝑖 : 𝑐 to rank 𝑟 , we can
instantiate it to the set of axes 𝑎𝑖,0, · · · , 𝑎𝑖,𝑟−1. The canonical mapping between two aggregated axes
𝑥𝑖 : 𝑐 and 𝑥 𝑗 : 𝑐 can then be established as {𝑎𝑖,𝑘 ↦→ 𝑎 𝑗,𝑘 | 𝑘 ∈ {0 · · · 𝑟 − 1}}, and the semantics of
relabel follows this mapping to relabel the instantiated axes.

We can then reduce our problem to verifying the rule for all possible RClass instantiations:∧
𝑟1,𝑟2, · · ·

valid({𝑐𝑖 ↦→ 𝑟𝑖 }) (4)

where {𝑐𝑖 ↦→ 𝑟𝑖 } is a map containing the ranks for all RClasses 𝑐1, 𝑐2, · · · in the rule. valid({𝑐𝑖 ↦→ 𝑟𝑖 })
denotes the proof obligation for a concrete-ranked instance, where the RClass 𝑐𝑖 is instantiated to
rank 𝑟𝑖 , for all 𝑖 ∈ {1 · · · 𝑝}. We still need to verify the rule for all possible ranks of all RClasses.

Our Approach: To simplify the discussion, let’s assume that the rule only has one aggregated-axis
𝑥 , with RClass 𝑐 (i.e., 𝑥 : 𝑐). We can then rewrite Equation 4 as∧

𝑖

valid(𝑖) (5)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

29:18 Arora et al.

where valid(𝑖) (short for valid({𝑐 ↦→ 𝑖})) is true if and only if the rule is valid when rank of 𝑐 (and
𝑥) is 𝑖 . We observe that for every RClass in a rule, there exists a bound corresponding to a sufficient
rank required for unbounded verification, i.e., there exists a rank 𝑘 , such that,

∀𝑖 ≥ 𝑘, valid(𝑖) → valid(𝑖 + 1) (6)

This means that for all 𝑖 ≥ 𝑘 , if the rule is valid when 𝑐 has rank 𝑖 , then the rule is valid when 𝑐 has
rank 𝑖 + 1. Given such a 𝑘 , we can do unbounded verification for the rule using 𝑘-induction:
• Basis: Use bounded verification to prove that the rule is valid for all ranks until 𝑘 :∧

𝑖=1· · ·𝑘
valid(𝑖)

• Induction case: Use induction on the rank of 𝑐 , with Equation 6 as induction hypothesis:

valid(𝑘) ∧ [∀𝑖 ≥ 𝑘, valid(𝑖) → valid(𝑖 + 1)] ⇒
∧
𝑖≥𝑘

valid(𝑖)

This would imply that the rule is correct for an arbitrary number of named-axes in 𝑐 . Now what
remains is finding a sufficient rank 𝑘 for any RClass in a rule. We show how to derive such a bound
with the help of an example rewrite rule.

6.2 Bound Computation Example

Consider an input tensor Y which has one aggregated-axis, say 𝑥 , having the RClass 𝑐 (i.e. 𝑥 : 𝑐).
The rewrite rule PadLowCombine is shown below:

pad-low(pad-low(Y, 0, 𝐿1), 0, 𝐿2) ⇒𝐿1≥0 ∧ 𝐿2≥0 pad-low(Y, 0, 𝐿1 + 𝐿2) (7)

where 𝐿1 = {𝑥 ↦→ 𝑙1} and 𝐿2 = {𝑥 ↦→ 𝑙2}, for some maps 𝑙1 and 𝑙2.
The PadLowCombine rule merges two pad-low operators into a single pad-low operator. The

precondition requires that both padding attributes should be non-negative. For this rule, the
precondition also implies that the LHS expression is valid. The variables appearing in this rule are
the padding attributes 𝐿1, 𝐿2 and the input tensor Y. Using Equation 3, we can express the validity
condition for this rewrite rule as

∀ Y, 𝐿1, 𝐿2, 𝐿1 ≥ 0 ∧ 𝐿2 ≥ 0→ ⟦LHS⟧ = ⟦RHS⟧ (8)

It is easy to see that both LHS and RHS have the same shape, i.e., they have the same domain of
accesses. Thus, we can rewrite ⟦LHS⟧ = ⟦RHS⟧ by interpreting the tensors under a general, valid
access to these tensors. Let 𝐴 ∈ Access(LHS) be an arbitrary access from the domain of the output
tensors. It has the form 𝐴 = {𝑥 ↦→ 𝑎}, where 𝑎 maps named-axes in 𝑥 to (symbolic) indices. We use
the denotational semantics of pad-low described in §5, to symbolically execute these expressions.

⟦LHS⟧ = ⟦RHS⟧
⇔ ∀𝐴, ⟦LHS⟧ [𝐴] = ⟦RHS⟧ [𝐴]
⇔ ∀𝐴, ⟦pad-low(pad-low(Y, 0, 𝐿1), 0, 𝐿2)⟧ [𝐴] = ⟦pad-low(Y, 0, 𝐿1 + 𝐿2)⟧ [𝐴]
⇔ ∀𝐴, if 𝐴 ≥ 𝐿2 then (if 𝐴 − 𝐿2 ≥ 𝐿1 then Y[𝐴 − 𝐿1 − 𝐿2] else 0) else 0 =

if 𝐴 ≥ 𝐿1 + 𝐿2 then Y[𝐴 − 𝐿1 − 𝐿2] else 0
⇔∀𝑎, if 𝑎 ≥ 𝑙2 then (if 𝑎 − 𝑙2 ≥ 𝑙1 then Y[𝑥 ↦→ 𝑎 − 𝑙1 − 𝑙2] else 0) else 0 =

if 𝑎 ≥ 𝑙1 + 𝑙2 then Y[𝑥 ↦→ 𝑎 − 𝑙1 − 𝑙2] else 0 (9)

In the last step, we made use of the fact that the aggregated maps like 𝐴, 𝐿1, 𝐿2 contain only one
aggregated-axis 𝑥 . Equation 9 holds for any number of named-axes in 𝑥 .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

TensorRight: Automated Verification of Tensor Graph Rewrites 29:19

Observation. We can syntactically partition the above equation as follows:

∀𝑎, if 𝑎 ≥ 𝑙2 then (if 𝑎 − 𝑙2 ≥ 𝑙1 then Y[𝑥 ↦→ 𝑎 − 𝑙1 − 𝑙2] else 0) else 0 =
if 𝑎 ≥ 𝑙1 + 𝑙2 then Y[𝑥 ↦→ 𝑎 − 𝑙1 − 𝑙2] else 0

We explain each part below:
Y[_]: represents accesses to the tensor Y.
𝑥 ↦→ 𝑎 − 𝑙1 − 𝑙2: represents an access expression for a tensor access. In this case, 𝑎 − 𝑙1 − 𝑙2 is the

access map for the aggregated-axis 𝑥 . The rank of this access map depends on the number of
named-axes in 𝑥 . We observe that we can rewrite this expression as follows:

𝑎 − 𝑙1 − 𝑙2 = fmap(𝑒, 𝑎, 𝑙1, 𝑙2) where 𝑒
df
= 𝜆𝑣, 𝑝, 𝑝 ′.(𝑣 − 𝑝 − 𝑝 ′)

where fmap takes a function and applies it to a list of maps. For instance, if𝑚 = {𝑖 ↦→ 𝑣𝑖 , 𝑗 ↦→ 𝑣 𝑗 }
and 𝑓 = 𝜆𝑣 .(𝑣 + 1), then fmap(𝑓 ,𝑚) = {𝑖 ↦→ 𝑣𝑖 + 1, 𝑗 ↦→ 𝑣 𝑗 + 1}. Here, 𝑒 is independent of the
rank of 𝑥 and only 𝑎, 𝑙1, 𝑙2 change as the rank of 𝑥 changes. Thus, we are able to capture all the
rank-independent information in the function 𝑒 . We call such a function an index transformer

because it transforms output index-values to input index-values.
𝑎 ≥ 𝑙1 + 𝑙2: these are boolean values, referred to as conditions, occurring inside if-then-else blocks.

They capture the dependency of the output tensor value on the input tensor values, based on
the value of the access. They originate from the operator semantics. For instance, 𝑛𝑜𝑡-𝑝𝑎𝑑 in the
pad-low semantics takes an access 𝐴 and tells if it lies in the padded area or not. We observe that
we can rewrite this condition as follows:

𝑎 ≥ 𝑙1 + 𝑙2 = fold(𝑔1, 𝑎, 𝑙1, 𝑙2) where 𝑔1
df
= 𝜆𝑣, 𝑝, 𝑝 ′.(𝑣 ≥ 𝑝 + 𝑝 ′)

where fold takes a boolean valued function, applies it to a list of maps, and returns true if all values
are true, false otherwise. fold can be defined as:

fold(𝑔,𝑚1,𝑚2, · · ·) =
∧

𝑖∈dom(𝑚1)
𝑔(𝑚1 (𝑖),𝑚2 (𝑖), · · ·)

Similarly, we can write 𝑎 ≥ 𝑙2 as fold(𝑔2, 𝑎, 𝑙2), where 𝑔2
df
= 𝜆𝑣, 𝑝.(𝑣 ≥ 𝑝). Here, 𝑔1 and 𝑔2 are

independent of the rank of 𝑥 and only 𝑎, 𝑙1, 𝑙2 change as the rank of 𝑥 changes. We capture all the
rank-independent information in the functions 𝑔1 and 𝑔2.

if _ then (if _ then _ else 0) else 0 = if _ then _ else 0: this is a function which returns a boolean,
denoting if the values of LHS and RHS at the access 𝐴 are equal or not. We call this scalarf since
it contains the core, scalar computation in the expressions and may consist of arithmetic and
conditionals. For this rule, we can define scalarf as

scalarf (𝑦,𝑏1, 𝑏2)
df
= (if 𝑏2 then (if 𝑏1 then 𝑦 else 0) else 0) = (if 𝑏1 then 𝑦 else 0)

𝑦
df
= Y[𝑥 ↦→ fmap(𝑒, 𝑎, 𝑙1, 𝑙2)] 𝑏1

df
= fold(𝑔1, 𝑎, 𝑙1, 𝑙2) 𝑏2

df
= fold(𝑔2, 𝑎, 𝑙2)

Based on the arguments to scalarf, we say scalarf has 1 access to Y and 2 conditions. Note that
there are 2 occurrences each of 𝑦 and 𝑏1 in the scalarf but we only care about distinct accesses and
conditions. Just like index transformers, scalarf is also independent of the rank of 𝑥 . This property
will be crucial for our bound computation algorithm. We use this observation to write Equation 9
in terms of scalarf and substitute it back in Equation 8 to get the validity condition of the rule:

∀ Y, 𝑙1, 𝑙2, 𝑙1 ≥ 0 ∧ 𝑙2 ≥ 0→
∀𝑎, scalarf (Y[𝑥 ↦→ fmap(𝑒, 𝑎, 𝑙1, 𝑙2)], fold(𝑔1, 𝑎, 𝑙1, 𝑙2), fold(𝑔2, 𝑎, 𝑙2)) (10)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

29:20 Arora et al.

Bound Computation. We first look at the validity condition of the rule when 𝑥 is instantiated with
some rank 𝑖 , i.e., valid(𝑖). We instantiate the aggregated-axis 𝑥 to 𝑥𝑖 , which contains 𝑖 named-axes,
say {1, · · · , 𝑖}. We also instantiate the input tensor, padding attributes, and the general access map.
Thus, we can rewrite valid(𝑖) as

∀ Y𝑖 , 𝑙𝑖1, 𝑙𝑖2, 𝑙𝑖1 ≥ 0 ∧ 𝑙𝑖2 ≥ 0→
∀𝑎𝑖 , scalarf (Y𝑖 [𝑥𝑖 ↦→ fmap(𝑒, 𝑎𝑖 , 𝑙𝑖1, 𝑙𝑖2)], fold(𝑔1, 𝑎𝑖 , 𝑙𝑖1, 𝑙𝑖2), fold(𝑔2, 𝑎𝑖 , 𝑙𝑖2)) (11)

As noted before, scalarf, 𝑒 , 𝑔1, and 𝑔2 are independent of the rank of 𝑥 , so they remain unchanged
irrespective of the value of 𝑖 . We want to find a 𝑘 such that Equation 6 holds. The idea is to start
with [valid(𝑘) → valid(𝑘 + 1)] and try to find a 𝑘 which satisfies the induction hypothesis. We
instead work with its contrapositive,

valid(𝑘) → valid(𝑘 + 1) ⇔ ¬valid(𝑘 + 1) → ¬valid(𝑘)

Intuitively, ¬valid(𝑖) is true if there is a counterexample for the rule at rank 𝑖 . We want to find
a sufficient 𝑘 such that we can lower a counterexample at rank 𝑘 + 1 (and all higher ranks) to a
counterexample at rank 𝑘 . On expanding the validity conditions using Equation 11, we get:

∃ Y𝑘+1, 𝑙𝑘+11 , 𝑙𝑘+12 , 𝑙𝑘+11 ≥ 0 ∧ 𝑙𝑘+12 ≥ 0
∧
∃𝑎𝑘+1,

¬scalarf (Y𝑘+1 [𝑥𝑘+1 ↦→ fmap(𝑒, 𝑎𝑘+1, 𝑙𝑘+11 , 𝑙𝑘+12)], fold(𝑔1, 𝑎𝑘+1, 𝑙𝑘+11 , 𝑙𝑘+12), fold(𝑔2, 𝑎𝑘+1, 𝑙𝑘+12))y
∃ Y𝑘 , 𝑙𝑘1 , 𝑙𝑘2 , 𝑙𝑘1 ≥ 0 ∧ 𝑙𝑘2 ≥ 0

∧
∃𝑎𝑘 ,

¬scalarf (Y𝑘 [𝑥𝑘 ↦→ fmap(𝑒, 𝑎𝑘 , 𝑙𝑘1 , 𝑙𝑘2)], fold(𝑔1, 𝑎𝑘 , 𝑙𝑘1 , 𝑙𝑘2), fold(𝑔2, 𝑎𝑘 , 𝑙𝑘2))

This means:

• We are given a tensor Y𝑘+1 which has 𝑘 + 1 named-axes in 𝑥𝑘+1, and whose shape is of the
form Shape(Y) = {𝑥𝑘+1 ↦→𝑚}, where𝑚 = {1 ↦→ 𝑛1, · · · , 𝑘 + 1 ↦→ 𝑛𝑘+1}
• We are given padding attributes 𝑙𝑘+11 and 𝑙𝑘+12 such that the precondition is satisfied.
• We are given a map 𝑎𝑘+1 such that output tensors do not match at the access {𝑥𝑘+1 ↦→ 𝑎𝑘+1}.
• We then need to construct a tensor Y𝑘 which has 𝑘 named-axes in 𝑥𝑘 . We also need to
construct padding attributes 𝑙𝑘1 and 𝑙𝑘2 such that the precondition is still satisfied, and a map
𝑎𝑘 such that the output tensors do not match at the access {𝑥𝑘 ↦→ 𝑎𝑘 }.

Counterexample Construction. Our counterexample construction algorithm involves projecting the
(𝑘 +1)-ranked RClass to a 𝑘-ranked RClass, i.e., we would choose 𝑘 named-axes from {1, · · · , 𝑘 + 1}.
There are 𝑘 + 1 such projections but all projections may not lead to a counterexample. We express
our construction through a set of equations and derive constraints on the projection.
Let Γ ⊂ {1, · · · , 𝑘 + 1} be a projection of size 𝑘 . The named-axes in Γ are currently unknown.

We can then express the 𝑘-ranked attributes as follows: Shape(Y𝑘) = {𝑥𝑘 ↦→ 𝑚 |Γ}, 𝑎𝑘 = 𝑎𝑘+1 |Γ ,
𝑙𝑘1 = 𝑙𝑘+11 |Γ , and 𝑙𝑘2 = 𝑙𝑘+12 |Γ . These are unknown as well. To construct a 𝑘-ranked counterexample, we
first make sure that the arguments to scalarf have the same values in both ranks. We equate scalarf
arguments in the 𝑘-ranked counterexample to the corresponding arguments in the (𝑘 + 1)-ranked
counterexample and collect constraints on Γ. A constraint is a named-axis that needs to be in the
projection for the 𝑘-ranked counterexample to exist. Thus,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

TensorRight: Automated Verification of Tensor Graph Rewrites 29:21

• fold(𝑔1, 𝑎𝑘 , 𝑙𝑘1 , 𝑙𝑘2) and fold(𝑔1, 𝑎𝑘+1, 𝑙𝑘+11 , 𝑙𝑘+12) need to be equisatisfiable. Let 𝐶1 be the set of
constraints we get from this equation. We first expand the definition of fold,

fold(𝑔1, 𝑎𝑘+1, 𝑙𝑘+11 , 𝑙𝑘+12) =
𝑘+1∧
𝑖=1

𝑎𝑘+1 (𝑖) ≥ 𝑙𝑘+11 (𝑖) + 𝑙𝑘+12 (𝑖)

fold(𝑔1, 𝑎𝑘 , 𝑙𝑘1 , 𝑙𝑘2) =
∧
𝑗 ∈Γ

𝑎𝑘 (𝑗) ≥ 𝑙𝑘1 (𝑗) + 𝑙𝑘2 (𝑗)

Let 𝑏 = fold(𝑔1, 𝑎𝑘+1, 𝑙𝑘+11 , 𝑙𝑘+12), which contains 𝑘 + 1 clauses, and 𝑏 ′ = fold(𝑔1, 𝑎𝑘 , 𝑙𝑘1 , 𝑙𝑘2),
which contains 𝑘 clauses. The value of 𝑏 is known since it depends entirely on the (𝑘 + 1)-
ranked counterexample. Let 𝑟 be the number of clauses in 𝑏 which evaluate to true. The
remaining (𝑘 + 1) − 𝑟 clauses evaluate to false. We do a case analysis on 𝑟 :
– 𝑟 < 𝑘 : 𝑏 is false for this case. We want 𝑏 ′ to be false as well. We can see that for any
projection Γ, 𝑏 ′ will be false. There are no constraints in this case, so 𝐶1 = ∅.

– 𝑟 = 𝑘 : 𝑏 is false for this case. We want 𝑏 ′ to be false as well. There is exactly one named-axis,
say 𝑙 , for which 𝑎𝑘+1 (𝑙) ≥ 𝑙𝑘+11 (𝑙) + 𝑙𝑘+12 (𝑙) is false. 𝑙 needs to be in the projection for 𝑏 ′ to
be false. Leaving out 𝑙 will make 𝑏 ′ true, which is not desirable. For this case, 𝐶1 = {𝑙}

– 𝑟 = 𝑘 + 1: 𝑏 is true for this case, so we want 𝑏 ′ to be true as well. We can see that for any
projection Γ, 𝑏 ′ will be true. There are no constraints in this case, so 𝐶1 = ∅.

As seen above, we get at most one constraint from this equation, so |𝐶1 | ≤ 1.
• fold(𝑔2, 𝑎𝑘 , 𝑙𝑘2) and fold(𝑔2, 𝑎𝑘+1, 𝑙𝑘+12) need to be equisatisfiable. Let𝐶2 be the set of constraints
we get from this equation. We do a similar analysis and get at most one constraint from this
equation, so |𝐶2 | ≤ 1. The named-axes in 𝐶2 may or may not be same as named-axes in 𝐶1.
• Y

𝑘 [𝑥𝑘 ↦→ fmap(𝑒, 𝑎𝑘 , 𝑙𝑘1 , 𝑙𝑘2)] needs to be set to Y
𝑘+1 [𝑥𝑘+1 ↦→ fmap(𝑒, 𝑎𝑘+1, 𝑙𝑘+11 , 𝑙𝑘+12)]. This

does not introduce any constraint, irrespective of the projection. There could have been
constraints introduced if the scalarf had more than 1 access to Y. We discuss more about the
general case in §6.3.

The final set of constraints is computed as 𝐶 = 𝐶1 ∪ 𝐶2. If |𝐶 | > 𝑘 , then we cannot get a
valid projection. Thus, we need |𝐶 | ≤ 𝑘 for a valid counterexample lowering. We know that
|𝐶 | = |𝐶1 ∪ 𝐶2 | ≤ |𝐶1 | + |𝐶2 | ≤ 2. From this, we get 2 ≤ 𝑘 as a sufficient condition for a valid
counterexample lowering. Finally, we can fully construct the 𝑘-ranked counterexample as follows:
• Projection: The named-axes in 𝐶 need to be a part of the projection Γ, but the other axes
are unspecified. To get the final projection Γ, extend 𝐶 by any 𝑘 − |𝐶 | named-axes from
{1, · · · , 𝑘 + 1} 𝐶 .
• Tensor shapes and attributes: Compute the 𝑘-ranked attributes as follows: Shape(Y𝑘) =
{𝑥𝑘 ↦→ 𝑚 |Γ}, 𝑎𝑘 = 𝑎𝑘+1 |Γ , 𝑙𝑘1 = 𝑙𝑘+11 |Γ , and 𝑙𝑘2 = 𝑙𝑘+12 |Γ . This ensures that the shape and the
access map are valid and the precondition is satisfied in the 𝑘-ranked counterexample.
• Tensor values: Let 𝑣 = Y

𝑘+1 [𝑥𝑘+1 ↦→ fmap(𝑒, 𝑎𝑘+1, 𝑙𝑘+11 , 𝑙𝑘+12)]. We only require Y𝑘 to have the
value 𝑣 at the access {𝑥𝑘 ↦→ fmap(𝑒, 𝑎𝑘 , 𝑙𝑘1 , 𝑙𝑘2)} and the values at other points are unspecified.

Therefore, for all 𝑘 ≥ 2, valid(𝑘) implies valid(𝑘 + 1). This allows us to reduce the unbounded-
verification proof obligation to two bounded-verification proof obligations: valid(1) and valid(2).

6.3 Bound Computation for the General Case

In §6.2, we derived a bound for the PadLowCombine rule and reduced the unbounded-verification
proof obligation to bounded-verification proof obligations. This section first presents a theorem
for unbounded verification for a general rewrite rule and an algorithm to compute a bound in the

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

29:22 Arora et al.

general case. We then briefly discuss how we handle the complexities of the general case. The
detailed proof is in Appendix E. The InferBound routine is described in Algorithm 1.

Lemma 1. Let 𝑅 be any rewrite rule written in our DSL. Let 𝑚 be a map containing ranks of
RClasses in 𝑅. For any RClass 𝑐 in the rule, if 𝑘 = InferBound(𝑅, 𝑐), then

∀𝑖 ≥ 𝑘, valid(𝑚[𝑐 ↦→ 𝑖]) → valid(𝑚[𝑐 ↦→ 𝑖 + 1])

Here,𝑚[𝑐 ↦→ 𝑗] denotes the map where the rank of 𝑐 is updated to 𝑗 , while all other ranks are
unchanged. In other words, for all 𝑖 ≥ 𝑘 and for any ranks of the other RClasses, if the rule is valid
when 𝑐 has rank 𝑖 , then it implies that the rule is valid when 𝑐 has rank 𝑖 + 1. Lemma 1 allows us to
use 𝑘-induction on the RClass ranks to verify the rule for arbitrary ranks of all RClasses.

Theorem 2. Let 𝑅 be any rewrite rule written in our DSL. If 𝑐1 · · · 𝑐𝑝 are the RClasses appearing
in the rule and 𝑘𝑖 = InferBound(𝑅, 𝑐𝑖) for all 𝑖 ∈ {1 · · · 𝑝}, then 𝑅 is a valid rule in the unbounded
setting if and only if ∧

1≤𝑟1≤𝑘1

· · ·
∧

1≤𝑟𝑝 ≤𝑘𝑝

valid({𝑐1 ↦→ 𝑟1, · · · , 𝑐𝑝 ↦→ 𝑟𝑝 })

This follows from using Lemma 1 as induction hypothesis for all RClasses.

The InferBound routine in Algorithm 1 takes a rewrite rule 𝑅 and RClass 𝑐 as input. On line 3, we
use the TensorsWithRClass subroutine to get all the input tensors which have an aggregated-axis
having the RClass 𝑐 . We iterate through all the tensors in lines 4-9. For each tensor, we use the
NumTensorAccess subroutine to get the number of distinct accesses to that tensor and add its
contribution to the bound. On line 10, we use the NumConds subroutine to get the number of
conditions having an aggregated-axis with the RClass 𝑐 and add it to the bound. We also make sure
that the computed bound is at least 1 since we do not want empty aggregated-axes.

We now briefly discuss the complexities that we encounter while tackling a general rewrite rule
and how the bound computed by this algorithm is sufficient.

Algorithm 1: Computing the bound for an
RClass

Inputs : Rewrite rule 𝑅 & RClass 𝑐

Output : 𝑏𝑜𝑢𝑛𝑑 , i.e., a sufficient rank for 𝑐
1 Function InferBound (𝑅, 𝑐) :
2 𝑏𝑜𝑢𝑛𝑑 ← 0;
3 𝑡𝑒𝑛𝑠𝑜𝑟𝑠 ← TensorsWithRClass(𝑅, 𝑐);
4 for 𝑡 ∈ 𝑡𝑒𝑛𝑠𝑜𝑟𝑠 do
5 𝑛 ← NumTensorAccess(𝑅, 𝑡);
6 if 𝑛 > 1 then
7 𝑏𝑜𝑢𝑛𝑑 ← 𝑏𝑜𝑢𝑛𝑑 +

(
𝑛
2
)
;

8 end
9 end

10 𝑏𝑜𝑢𝑛𝑑 ← 𝑏𝑜𝑢𝑛𝑑 + NumConds(𝑅, 𝑐);
11 return Max(𝑏𝑜𝑢𝑛𝑑, 1)
12 End Function

Arbitrary Operator Compositions. For
any rule written in our DSL, we can sym-
bolically evaluate both LHS and RHS ex-
pressions under a general, valid access.
We observe that the result can be ex-
pressed in terms of a scalarf function,
which could have any number of accesses
and conditions, similar to the PadLow-
Combine rule. Therefore, we need to ap-
propriately handle arbitrary number of
accesses and conditions.

Arbitrary Number of Conditions. In gen-
eral, a rule could have an arbitrary num-
ber of conditions, say 𝑚. Similar to the
PadLowCombine rule, we observe that
any condition introduces at most 1 con-
straint. We assume that all𝑚 conditions
are independent and we get𝑚 constraints
in the worst case.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

TensorRight: Automated Verification of Tensor Graph Rewrites 29:23

Arbitrary Number of Tensor Accesses. In general, a rule could have an arbitrary number of accesses,
say 𝑛, to a tensor. We need to make sure that during the projection, accesses containing unequal
values do not get projected down to the same point in the tensor, since a point cannot have two
different values. We do a pairwise analysis of the accesses (

(
𝑛
2
)
such pairs) and each pair can give at

most 1 constraint. Thus, we get
(
𝑛
2
)
constraints from the accesses in the worst case.

Arbitrary Number of RClasses. In general, a rule could have any number of aggregated-axes
and RClasses. This would require computing the minimum rank for each RClass. We do so by
analyzing each RClass in isolation, i.e., finding a sufficient 𝑘 for which we can do a (𝑘 + 1) to 𝑘
counterexample projection while keeping the ranks of other RClasses unchanged. The bound for
this case would be

(
𝑛
2
)
+𝑚, where 𝑛 is the number of accesses and𝑚 is the number of conditions

in which the RClass appears. The computed bound is independent of the ranks of the other
RClasses. Therefore, to ensure correctness in the unbounded setting in presence of multiple
RClasses, bounded-verification instances corresponding to all possible combinations of RClass
ranks within the bounds need to be verified. This means that if 𝑐1 · · · 𝑐𝑝 are the RClasses appearing
in a rule 𝑅 and 𝑘𝑖 = InferBound(𝑅, 𝑐𝑖) for all 𝑖 ∈ {1 · · · 𝑝}, then we need to verify

∏𝑝

𝑖=1 𝑘𝑖 number
of bounded-verification instances.

Arbitrary Number of Input Tensors. In general, a rule could have any number of input tensors. We
still analyze each RClass in isolation, but while counting the number of accesses, we only consider
accesses to the tensors which contain that RClass. We also make the observation that accesses
across tensors do not lead to any constraints, which allows us to do a pairwise analysis of accesses
per tensor. We then add the contribution of each tensor to the bound. This is necessary since we
take the union of all constraints from all tensors.

6.4 Bounded Verification of Rewrite Rules

We reduced the unbounded-verification proof obligation to a finite set of bounded-verification
proof obligations in §6.3. TensorRight infers a sufficient rank for every RClass and instantiates
them with all ranks up to that bound, so we end up with fixed-rank but arbitrary-sized tensors.
We handle tensors of unbounded size using uninterpreted functions from accesses to values. For
any rewrite rule, TensorRight symbolically executes the LHS and RHS tensor expressions using
operator semantics and interprets them under a general access with symbolic indices, chosen
from the domain of accesses of the two expressions. During the symbolic execution, TensorRight
decomposes the verification into two kinds of checks below.

Checks performed during symbolic execution. Each tensor operator constructs the shape of the
output tensor using the shapes of the input tensor(s). TensorRight checks that the final LHS and
RHS tensors have the same rank and the same named-axes, i.e., (= (axes lhs) (axes rhs)).
This check is performed entirely by the symbolic execution engine, rather than by the solver.

Checks delegated to the SMT solver. During symbolic execution, TensorRight collects assertions
which are then sent to an SMT solver as verification conditions. These assertions check that the
axes sizes for LHS and RHS are the same; that accesses fall within axes sizes; and that the values
stored in tensor expressions are the same. These verification conditions are described below:
• Assertions related to axes sizes: under the precondition, assuming LHS is valid, assert that
the LHS shape and RHS shape are the same. This can be represented as (=> (&& precond
lhsValid) (= (shape lhs) (shape rhs))). Asserting the equality of two shapes involves
checking if the shapes have the same named-axes and the corresponding axes have the same
sizes. As discussed, the former check is done entirely by the symbolic execution engine.
However, the solver is needed for the latter check.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

29:24 Arora et al.

• Assertions related to access ranges: under the precondition, assuming LHS is valid, all valid
accesses to LHS lead to valid accesses to RHS. This can be represented as (=> (&& precond
lhsValid lhsAccessValid) rhsAccessValid).
• Assertions related to final tensor expressions: under the precondition, assuming that LHS is
valid, RHS should be valid and they contain the same values under a general access. This can
be represented as (=> (&& precond lhsValid) (&& rhsValid rewriteEquivalent)).

If the symbolic execution and SMT checks succeed, the rule is deemed verified for that rank.

6.5 Verifying Rules with Reduction Operators

As discussed in §5, automatically verifying expressions with reductions is challenging because:
• The sizes of reduced axes are unbounded.
• Reductions can be performed in multiple steps, such as when tiling the tensors or distribut-
ing reduction over concatenation. One such example is the rule reduce(concat(A,B)) ⇒
reduce(concat(reduce(A), reduce(B))).

In TensorRight, the key idea to verify rewrite rules with reductions is to represent the reduction
results as uninterpreted reduction elements, Red𝑋 𝑓 (𝑋) (see §5). We observe that the equivalence of
two reduction elements Red𝑋 𝑓 (𝑋) and Red𝑌𝑔(𝑌), can often be proven by showing that the LHS
and RHS are sums of the same values, i.e., 𝑓 (𝑋) and 𝑔(𝑌) represent the same (multi-)set.
One way to prove set equivalence is to establish a bijection between 𝑋 and 𝑌 and show each

pair of values in 𝑓 (𝑋) and 𝑔(𝑌) are equal, regardless of tensor instantiation and operator attributes.
In TensorRight, the user provides a relation between 𝑋 and 𝑌 as a hint. We then use an SMT
solver to verify that it is a bijection: (1) for all valid 𝑥 ∈ 𝑋 , a unique 𝑦 ∈ 𝑌 exists under the relation,
and vice versa and (2) the relation can take on all valid 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . After establishing the
bijection, we prove each pair of elements 𝑓 (𝑥) and 𝑔(𝑦) are always the same, regardless of tensor
instantiation. Successfully passing the checks reduces our proof to the case discussed in §6.4.
A majority of rules with reductions (13 out of 17) in our system can be proven by establishing

the bijection with user-provided hints. However, there are rules where bijectivity cannot be proven
due to limitations of SMT solvers on quantified formulas (1 out of 17), or no such bijection relation
exists due to the fact that the cardinalities of the sets of valid reduction indices in LHS and RHS

are different (3 out of 17). In these cases, it is up to the user to further complete the proof of set
equivalence based on the verifier output. Note that this is generally much easier than proving full
correctness from scratch.

7 Discussion

Choice of Tensor Compiler. We chose XLA since it is a production quality compiler and is integrated
into leading ML frontend-frameworks like TensorFlow, PyTorch, and JAX. The XLA compiler takes
model graphs from these frontends and converts them into XLA-HLO, which is much more expressive
than these frameworks. Operators in these frameworks either have direct counterparts in XLA-HLO
(e.g., concat, expand, slice), or can be expressed using existing XLA-HLO operators (e.g., squeeze,
shrink, split). Some XLA-HLO operators aremore general than their counterparts in other frameworks.
For instance, tf.tensordot in TensorFlow allows specifying only the contracting axes, whereas
DotGeneral in XLA-HLO allows specifying both contracting and batch axes. tf.pad in TensorFlow
and Pad in ONNX allow specifying only low and high padding attributes, whereas pad in XLA-HLO
allows specifying interior padding as well. Moreover, many operators in the jax.lax module [9] are
thin wrappers around equivalent XLA-HLO operators. As for other IR frameworks like ONNX [10],
their operators also are either similar to XLA-HLO operators, or can be expressed using XLA-HLO
operators. Therefore, XLA-HLO supports a more general set of operators than other frameworks.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

TensorRight: Automated Verification of Tensor Graph Rewrites 29:25

Minimum vs Sufficient Rank for Unbounded Verification. §6.3 shows how we can use the Infer-
Bound routine to compute a bound for every RClass in a rewrite rule and get a set of bounded-
verification instances. These bounded-verification instances are sufficient to imply correctness in
the unbounded setting. It is worth noting that this computed bound is only a sufficient rank and not
the minimum rank required for such a property to hold. For instance, in §6.2, we compute a bound
for the PadLowCombine rule by calculating the number of conditions and the number of accesses.
We assume the two conditions to be independent, each contributing 1 constraint in the worst case,
hence getting 2 as the final bound. However, we observe that given the precondition, the condition
𝑏1 implies the condition 𝑏2, which reduces the bound to 1. In general, the conditions may have
dependencies and such insights can help us derive a smaller, or maybe even the minimum bound.

8 Evaluation

We evaluated the TensorRight verification framework on the following aspects:
• Q1: How expressive is TensorRight DSL compared to other automatic tensor graph rewrite
verification systems? (§8.1)
• Q2: How good is TensorRight at performing unbounded verification? (§8.2)
• Q3: Can TensorRight be used to aid compiler developers in rapid development? (§8.3)

To answer these questions, we selected all rules from the XLA’s Algebraic Simplifier (AS) for
evaluation. The AS rewrite pass has 175 rules. These rules are implemented to speed up execution
and allow further optimizations like fusion in other compiler passes.

8.1 Expressiveness of TensorRight DSL

We compared the expressiveness of TensorRight with two other automatic tensor graph rewrite
engines, TASO [20] and PET [38], across all the 175 rules. These rules are categorized into 5 classes,
as shown in Table 1. We assessed whether each system can represent rules from these classes.
While TASO and PET do not support automatic, unbounded verification, we evaluated whether
they can express these rules. We found that TASO can represent 14 rules, and PET can represent 18
rules. Comparatively, TensorRight can represent 121 rules.
We also checked whether TASO and PET can perform bounded verification on the rules they

can represent. TASO and PET can prove 6 and 16 rules, respectively. In contrast, TensorRight
verified 115 rules in an unbounded setting. Verification statistics are detailed in §8.2.

Categories. Table 1 categorizes all the rules into 5 classes and summarizes representable rules
in the systems. Numbers in parentheses indicate verifiable rules, with TensorRight supporting
unbounded verification and others using bounded verification strategies. There are two high-level
classes: element-wise and non-element-wise rules. Element-wise rules are expressed with element-
wise arithmetic operations. They are further divided into rules with basic operators (e.g., +, ∗,
div, rem) and rules with advanced operators without good support by solvers (e.g., exp, power).
Non-element-wise rules involve operators that change axes sizes or perform reductions. This
category is further divided into reductions (e.g., conv, dot, and reduce), layout-sensitive operators
(e.g., reshape, bitcast), and others. We separately categorized rules with preconditions. Note that
rules with preconditions usually perform non-element-wise operations.

TensorRight. We implemented TensorRight in Haskell using the Grisette [29] symbolic evalu-
ation engine. We represented 121 rules in TensorRight and verified 115 of them in the unbounded
setting, using Z3 [15] for most verifications and cvc5 [6] for one advanced element-wise rule.

Table 1 shows that TensorRight was able to represent 46 element-wise simple rules and verified
45 of them. In the advanced element-wise class, TensorRight was able to verify only one rule

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

29:26 Arora et al.

Table 1. Number of supported rules per disjoint category. The numbers in parentheses indicate rules that

have been implemented and verified.
†
means verified using cvc5 solver.

Category (disjoint) Number of Supported Rules
XLA TensorRight TASO PET

Elementwise: simple 56 46 (45) 11 (5) 11 (11)
Elementwise: advanced 10 1 (1†) 0 (0) 0 (0)

Non-elementwise: reductions 22 20 (17) 0 (0) 2 (0)
Non-elementwise: layout-sensitive 29 0 (0) 0 (0) 2 (2)

Non-elementwise: others 58 54 (52) 3 (1) 3 (3)

Rules with Preconditions 61 40 (34) 0 (0) 0 (0)

Total 175 121 (115) 14 (6) 18 (16)

involving exp with cvc5. The limitations are due to unsupported operators in Z3 or cvc5 (e.g., log,
power) and the inability to reason about precision of floating point expressions efficiently.
Among non-element-wise rules, TensorRight was able to represent 74 and verified 69 rules.

For reduction rules, 20 rules were represented, with 3 unproven due to insufficient normalization
lemmas and handling cases with extra zeroes. TensorRight DSL cannot represent layout-sensitive
rules. We further discuss this in §10. The unsupported rules in the other category are due to
unimplemented operators (e.g., scatter, gather), while two rules failed to verify due to timeouts.

Comparison to PriorWorks. We compared TensorRightwith TASO and PET, which use axiomatic
and statistical proof mechanisms, respectively. Table 1 shows that TensorRightwas able to support
significantly more rules than TASO and PET. The main hurdles for TASO and PETwere unsupported
operators, too strict operator definitions (e.g., not supporting all the attributes for dot and conv),
and inability to handle preconditions. Unlike TensorRight, TASO and PET cannot express rules
requiring preconditions, precluding them from supporting 61 XLA rules.

The axiomatic approach requires axioms to prove equivalence of tensor expressions. Out of the
14 representable rules, 8 rules needed new axioms in TASO. It can be even more cumbersome for
an axiomatic approach like TASO when we need new axioms with preconditions.
The statistical approach in PET has benefits and drawbacks. It does not need verification con-

ditions proven by SMT solvers, making it potentially more flexible for operations not modeled
in SMT. However, PET can only verify linear expressions, which limits its scope. It is potentially
feasible to add support for preconditions by only generating test inputs meeting the precondition.

8.2 Verification Capabilities of TensorRight

Experimental Setup. All evaluations were conducted on a system equipped with an Intel Core
i9-13900K processor and 128GB of RAM. We supported boolean, integer, and real-valued tensors
in our DSL, and we verified the rules for all valid tensor types for that rule. The timeout per SMT
solver query was set to 10 seconds.

Out of the 121 rules that we can express in our DSL, we implemented 118 rules and verified 115
rules in the unbounded setting. Fig. 10a shows cumulative distribution of total verification times for
the 115 verified rules. TensorRight was able to verify 108 rules under 1 second, with verification
times ranging from a minimum of 0.023 s to a maximum of 23.33 s. Fig. 10b shows the number of
bounded-verification proof obligations (tasks) discharged for the verified rules. The number of
tasks is simply the product of the computed bounds of all RClasses in a rule. 110 of the rules only
required 1 task to guarantee correctness in the unbounded setting.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

TensorRight: Automated Verification of Tensor Graph Rewrites 29:27

0.1 1 10
 Total Verification Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a)

1 2 4
Number of Tasks

0

50

100

Nu
m

be
r o

f R
ul

es

110

3 2

(b)

Fig. 10. (a) The cumulative distribution of total verification time and (b) the number of tasks (bounded-

verification proof obligations) discharged.

TensorRight was unable to verify 6 rules. This included 3 timeouts, mainly due to those rules
having operators like div and rem, which solvers are slow at handling. The remaining 3 rules (not
implemented) cannot be proven correct due to missing rules on reduction elements.

8.3 Generalizing Rewrite Rules

Using TensorRight, we found that some XLA rewrite rules are overly constrained. Compiler
engineers intentionally impose these constraints to avoid reasoning about cases where spurious
bugs might be introduced. We used TensorRight to generalize the following rule by relaxing its
precondition.

FoldConvInputPad(XLA):
let 𝑆𝑜𝑙 = 𝑆𝑙 + 𝑆𝑙𝑝 in

let 𝑆𝑜ℎ = 𝑆ℎ + 𝑆ℎ𝑝 in

conv(pad(𝑡, 0, 𝑆𝑙𝑝 , 𝑆ℎ𝑝 , 𝑆𝑖𝑝), 𝑡 ′,
𝐵, 𝐹,𝑂, 𝑆𝑙 , 𝑆ℎ, 𝑆𝑖 , 𝑆

′
𝑖
)

=⇒
𝑆𝑖𝑝 = 0 ∧ 𝑆𝑖 = 1

conv(𝑡, 𝑡 ′, 𝐵, 𝐹,𝑂,
𝑆𝑜𝑙 , 𝑆𝑜ℎ, 𝑆𝑖 , 𝑆

′
𝑖
)

FoldConvInputPad(Generalized):
let 𝑆𝑜𝑙 = 𝑆𝑙 + 𝑆𝑖 × 𝑆𝑙𝑝 in

let 𝑆𝑜ℎ = 𝑆ℎ + 𝑆𝑖 × 𝑆ℎ𝑝 in

let 𝑆𝑜𝑖 = 𝑆𝑖 + 𝑆𝑖 × 𝑆𝑖𝑝 in

conv(pad(𝑡, 0, 𝑆𝑙𝑝 , 𝑆ℎ𝑝 , 𝑆𝑖𝑝), 𝑡 ′,
𝐵, 𝐹,𝑂, 𝑆𝑙 , 𝑆ℎ, 𝑆𝑖 , 𝑆

′
𝑖
)

=⇒
conv(𝑡, 𝑡 ′, 𝐵, 𝐹,𝑂,

𝑆𝑜𝑙 , 𝑆𝑜ℎ, 𝑆𝑜𝑖 , 𝑆
′
𝑖
)

Fig. 11. Fold input pad into conv.

Fig. 11 (top) presents the FoldConvInputPad rule as
it exists in XLA using the TensorRight DSL notation.
The goal of the rule is to fold the pad operator into the
operand arguments of conv itself (XLA-HLO convolutions
support padding as operands). This rule does not support
internal padding in the input tensor and gives up if
this constraint is violated. This is largely because it is
non-trivial to think about how the internal padding gets
folded into the dilation attribute. TensorRightwas able
to prove a more general version of this rule as shown in
Fig. 11 (bottom). The differences are put in boxes.
The key to generalizing the rule is to calculate the

padding arguments that get fed into the conv operator.
This is a function of the pad operator’s interior, high,
and low padding, as well as padding that may already
exist in the conv operator. Fig. 11 (bottom) shows how to
calculate the maps 𝑆𝑜𝑙 , 𝑆𝑜ℎ, 𝑆𝑜𝑖 for the rule to be general.
These maps are more complicated than the non-general
version, but this allows the compiler writer to get rid
of the precondition of the rule shown in Fig. 11 (bot-
tom). It is not immediately clear why this formulation
might be correct. Therefore, we encode it in our Grisette
implementation and successfully prove that the generalized rule with these calculations is valid.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

29:28 Arora et al.

9 Related Works

TensorRight is inspired by prior works on representing and verifying compiler transformations.

Tensor Language Formalisms. Glenside [37] formalizes the syntax and provides a composable
abstraction to represent tensor graph rewrites in a purely functional form. TASO [20] uses s-
expression based representations to functionally model tensor operators. It does not provide
semantics for tensor operators and mostly relies on axioms built around the operators to perform
verification related tasks. Such an axiomatic approach would not scale with addition of new tensor
operators, as it requires axioms describing operator properties and how the operators interact
with each other. TensorRight on the other hand only requires the users to specify operator
semantics for every new operator once. PET [38] verifies rewrites rule via a statistical approach.
PET symbolically infers the bounding boxes of the output tensor, where each box contains elements
represented by the same linear expression of its input elements. Leveraging the linear property,
PET statistically verifies the equivalence of the corresponding boxes by checking𝑚 + 1 specific
positions in the box, where𝑚 is the number of axes of the output tensor.

There have been many works providing semantics for hardware instructions [14, 19] or general
purpose compiler IRs such as LLVM IR [42]. ATL [25] is among the first works to provide denota-
tional semantics to model a tensor language. It is closely modeled after the widely adopted Halide
language [32]. In contrast, TensorRight models its core language around the production XLA
compiler’s High Level Operators. To the best of our knowledge, it is the first formalism supporting
XLA-HLO’s operators in their full generality, modeling all the parameterizations of operators. Similar
to ATL, TensorRight provides denotational semantics of tensor operators with arbitrary rank and
size, which is key to the proof that reduces unbounded verification into a bounded setting.

Verification of Rewrites with Proof Assistants. ATL [25] is among the first works to successfully
prove correctness of tensor graph rewrites with input tensors of arbitrary shape using the Coq proof
assistant. Comparatively, TensorRight does automatic verification given the rewrite specification
and accepts preconditions which are prevalent in practical rewrite rules developed by compiler
engineers. We note that ATL’s Coq based approach supports layout-sensitive rewrites such as those
that involve reshapes, which TensorRight does not cover currently. We provide a methodology to
support those operators in §10. There are examples from other domains on mechanized proofs on
rewrite systems, covering relational algebra [7, 16] and compiler construction tools [18].

Automated Verification of Rewrites. We take inspiration from many successful works focusing on
automatically verifying rewrites for different program representations, mainly with the aid of SMT
solvers. Alive [28] focuses on verifying rewrite rules in LLVM’s Instruction Combiner pass, which
is LLVM’s peephole optimization. They mainly focus on scalar LLVM IR instructions. Many works
on superoptimization use automated verification of rewrites as part of their synthesis process.
For example, the STOKE project [35] and others [5] verify rewrites expressed in x86 instructions,
Souper [34] verifies rewrites expressed in LLVM IR instructions, Minotaur [27] extends this to
vector LLVM IR instructions and [30] proves rewrite rules in Halide IR. TASO [20], PET [38],
and TENSAT [41] are examples of systems that automatically synthesize tensor graph rewrites.
TensorRight is influenced by the success of these systems and for the first time proposes an
automated process for verifying tensor graph rewrites on input tensors of arbitrary ranke and size.
Further, TensorRight is the first system to incorporate preconditions in its verification process.
Compiler Verification. There is a lot of work in building verified general-purpose compilers.

CompCert [24] is a formally verified C compiler with many verification efforts and extensions [17,
22, 39, 40]. CakeML [23] is a formally verified ML compiler. There are works on building associated
verified transformations [21, 42, 43]. Comparatively, less works have explored verifying compiler

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

TensorRight: Automated Verification of Tensor Graph Rewrites 29:29

transformations in tensor compilers. ATL [25, 26] is one of the first successes on this front that builds
upon a proof-assistant-aided verification process. To the best of our knowledge, TensorRight
is one of the first efforts at automatically verifying tensor graph rewrites closely resembling the
industrial strength XLA tensor compiler.

10 Limitations and Future Work

Currently, TensorRight does not support layout-sensitive rules with operators like reshape or
bitcast, which change operand layouts or do not respect element boundaries. The reshape operator
is particularly challenging to verify because it can collapse or flatten an arbitrary number of axes,
complicating the representation and verification of rank-polymorphic rules. This complexity arises
because reshape changes the interpretation of the input tensor by linearizing and de-linearizing
its accesses, depending on the rank of input. However, some reshape rules in XLA do not use the
operator’s full generality. This suggests a pragmatic approach to extend TensorRight to support
these simpler cases, addressing much of its practical usage in XLA. The exploration of reshape’s full
generality is left as potential future work.
As shown in §6.5, TensorRight can currently verify a subset of reduction rules. Users need

to provide hints to establish relations between reduction indices, satisfying assumptions like no
duplicate values being reduced or 1-1 relations. However, there are limitations, such as handling
cases with extra zeroes being reduced, difficulty in proving bijectivity due solver limitations, and
instances where no bijection relation exists. In these cases, users need to complete the proof of
set equivalence based on verifier output, which is generally easier than proving full correctness
from scratch. Future work may explore better proof strategies for reduction rules, possibly using a
𝑘-induction approach to establish bounds and finitize sizes for reduction axes.

11 Conclusion

In this paper, we presented TensorRight, the first automatic verification system that allows users to
succinctly express and verify tensor graph rewrite rules in their full generality. To do so, we designed
TensorRight DSL, which allows specification of rank- and size-polymorphic rewrite rules using a
novel axis definition, called aggregated-axes. TensorRight DSL consists of highly parameterized
tensor operators, closely resembling those in XLA-HLO. We also provided denotational semantics
for TensorRight DSL and used them to convert the unbounded-verification proof obligation to
a finite set of bounded-verification proof obligations. To the best of our knowledge, this is the
first time a sizable subset of tensor operators from a production-quality tensor IR (XLA-HLO) was
formalised. We demonstrated that TensorRight can verify the majority of complex rewrite rules
from the production XLA compiler’s algebraic simplifier in the unbounded setting, vastly surpassing
the closest automatic, bounded-verification technique.

12 Data-Availability Statement

An artifact [3] associated with this paper was evaluated and is freely available.

Acknowledgments

We thank the anonymous reviewers for their constructive feedback. We would also like to thank
Wanyu Zhao for her feedback on early drafts of this paper. This work was supported in part by
ACE, one of the seven centers in JUMP 2.0 and the CONIX Research Center, one of the six centers
in JUMP, which are Semiconductor Research Corporation (SRC) programs sponsored by DARPA;
by NSF under grants CCF-2338739, CCF-2122950, ITE-2132318, and CCF-2437238; by DARPA under
grants FA8750-16-2-0032 and D22AP00146-00 as well as gifts from Adobe, Facebook, and Intel.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

29:30 Arora et al.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16). USENIX Association, Savannah, GA, 265–283. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/abadi

[2] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin Bao, Peter
Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban Desmaison, Zachary
DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar,
Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie
Pan, Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Shunting Zhang, Michael
Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou, Xiaodong Wang, Ajit Mathews, William Wen,
Gregory Chanan, Peng Wu, and Soumith Chintala. 2024. PyTorch 2: Faster Machine Learning Through Dynamic
Python Bytecode Transformation and Graph Compilation. In Proceedings of the 29th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems, Volume 2 (La Jolla, CA, USA) (ASPLOS ’24).
Association for Computing Machinery, New York, NY, USA, 929–947. https://doi.org/10.1145/3620665.3640366

[3] Jai Arora, Sirui Lu, Devansh Jain, Tianfan Xu, Farzin Houshmand, Phitchaya Mangpo Phothilimthana, Mohsen Lesani,
Praveen Narayanan, Karthik Srinivasa Murthy, Rastislav Bodik, Amit Sabne, and Charith Mendis. 2024. Artifact for
"TensorRight: Automated Verification of Tensor Graph Rewrites". https://doi.org/10.5281/zenodo.14159871

[4] The JAX Authors. 2024. Named axes and easy-to-revise parallelism with xmap. https://web.archive.org/web/
20240320140219/https://jax.readthedocs.io/en/latest/notebooks/xmap_tutorial.html archived 2024-03-20.

[5] Sorav Bansal and Alex Aiken. 2006. Automatic generation of peephole superoptimizers. SIGOPS Oper. Syst. Rev. 40, 5
(oct 2006), 394–403. https://doi.org/10.1145/1168917.1168906

[6] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms for

the Construction and Analysis of Systems, Dana Fisman and Grigore Rosu (Eds.). Springer International Publishing,
Cham, 415–442.

[7] Véronique Benzaken and Évelyne Contejean. 2019. A Coq mechanised formal semantics for realistic SQL queries:
formally reconciling SQL and bag relational algebra. In Proceedings of the 8th ACM SIGPLAN International Conference

on Certified Programs and Proofs (Cascais, Portugal) (CPP 2019). Association for Computing Machinery, New York, NY,
USA, 249–261. https://doi.org/10.1145/3293880.3294107

[8] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula,
Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of

Python+NumPy programs. http://github.com/google/jax
[9] JAX Contributors. 2024. jax.lax module. https://jax.readthedocs.io/en/latest/jax.lax.html
[10] ONNX Contributors. 2024. ONNX. https://onnx.ai/onnx/operators/
[11] OpenXLA Contributors. 2024. OpenXLA Project. https://web.archive.org/web/20241009145043/https://openxla.org/xla
[12] OpenXLA Contributors. 2024. XLA-HLO Operation Semantics. https://openxla.org/xla/operation_semantics
[13] PyTorch Contributors. 2024. Named Tensors. https://web.archive.org/web/20240703124627/https://pytorch.org/docs/

stable/named_tensor.html archived 2024-07-03.
[14] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and Grigore Roşu. 2019. A complete formal

semantics of x86-64 user-level instruction set architecture. In Proceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing
Machinery, New York, NY, USA, 1133–1148. https://doi.org/10.1145/3314221.3314601

[15] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. In Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[16] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. 2015. Fiat: Deductive Synthesis of Abstract
Data Types in a Proof Assistant. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (Mumbai, India) (POPL ’15). Association for Computing Machinery, New York, NY, USA,
689–700. https://doi.org/10.1145/2676726.2677006

[17] Delphine Demange, David Pichardie, and Léo Stefanesco. 2015. Verifying Fast and Sparse SSA-Based Optimizations in
Coq. In Compiler Construction, Björn Franke (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 233–252.

[18] Jason Gross, Andres Erbsen, Jade Philipoom, Miraya Poddar-Agrawal, and Adam Chlipala. 2022. Accelerating Verified-
Compiler Development with a Verified Rewriting Engine. In 13th International Conference on Interactive Theorem

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.5281/zenodo.14159871
https://web.archive.org/web/20240320140219/https://jax.readthedocs.io/en/latest/notebooks/xmap_tutorial.html
https://web.archive.org/web/20240320140219/https://jax.readthedocs.io/en/latest/notebooks/xmap_tutorial.html
https://doi.org/10.1145/1168917.1168906
https://doi.org/10.1145/3293880.3294107
http://github.com/google/jax
https://jax.readthedocs.io/en/latest/jax.lax.html
https://onnx.ai/onnx/operators/
https://web.archive.org/web/20241009145043/https://openxla.org/xla
https://openxla.org/xla/operation_semantics
https://web.archive.org/web/20240703124627/https://pytorch.org/docs/stable/named_tensor.html
https://web.archive.org/web/20240703124627/https://pytorch.org/docs/stable/named_tensor.html
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/2676726.2677006

TensorRight: Automated Verification of Tensor Graph Rewrites 29:31

Proving (ITP 2022) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 237), June Andronick and Leonardo
de Moura (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 17:1–17:18. https://doi.org/
10.4230/LIPIcs.ITP.2022.17

[19] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016. Stratified synthesis: automatically learning the
x86-64 instruction set. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA,
237–250. https://doi.org/10.1145/2908080.2908121

[20] Zhihao Jia, Oded Padon, James Thomas, ToddWarszawski, Matei Zaharia, and Alex Aiken. 2019. TASO: optimizing deep
learning computation with automatic generation of graph substitutions. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing Machinery, New
York, NY, USA, 47–62. https://doi.org/10.1145/3341301.3359630

[21] Theodoros Kasampalis, Daejun Park, Zhengyao Lin, Vikram S. Adve, and Grigore Roşu. 2021. Language-Parametric
Compiler Validation with Application to LLVM. In Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for Computing
Machinery, New York, NY, USA, 1004–1019. https://doi.org/10.1145/3445814.3446751

[22] Jérémie Koenig and Zhong Shao. 2021. CompCertO: Compiling Certified Open C Components. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI
2021). Association for Computing Machinery, New York, NY, USA, 1095–1109. https://doi.org/10.1145/3453483.3454097

[23] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: a verified implementation
of ML. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San
Diego, California, USA) (POPL ’14). Association for Computing Machinery, New York, NY, USA, 179–191. https:
//doi.org/10.1145/2535838.2535841

[24] Daniel Kästner, Ulrich Wünsche, Jörg Barrho, Marc Schlickling, Bernhard Schommer, Michael Schmidt, Christian
Ferdinand, Xavier Leroy, and Sandrine Blazy. 2018. CompCert: Practical experience on integrating and qualifying a
formally verified optimizing compiler. In ERTS 2018: Embedded Real Time Software and Systems. SEE. http://xavierleroy.
org/publi/erts2018_compcert.pdf

[25] Amanda Liu, Gilbert Bernstein, AdamChlipala, and Jonathan Ragan-Kelley. 2022. Verified Tensor-ProgramOptimization
Via High-level Scheduling Rewrites. In POPL’22: Proceedings of the 49th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (Philadelphia, PA, USA). http://adam.chlipala.net/papers/AtlPOPL22/
[26] Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley. 2024. A Verified Compiler for a Functional

Tensor Language. In PLDI’24: Proceedings of the 45th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Copenhagen, Denmark). http://adam.chlipala.net/papers/AtlPLDI24/
[27] Zhengyang Liu, Stefan Mada, and John Regehr. 2023. Minotaur: A SIMD-Oriented Synthesizing Superoptimizer.

arXiv:2306.00229 [cs.PL] https://arxiv.org/abs/2306.00229
[28] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015. Provably correct peephole optimizations

with alive. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Portland, OR, USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 22–32. https://doi.org/10.
1145/2737924.2737965

[29] Sirui Lu and Rastislav Bodík. 2023. Grisette: Symbolic Compilation as a Functional Programming Library. Proc. ACM
Program. Lang. 7, POPL, Article 16 (jan 2023), 33 pages. https://doi.org/10.1145/3571209

[30] Julie L. Newcomb, Andrew Adams, Steven Johnson, Rastislav Bodik, and Shoaib Kamil. 2020. Verifying and improving
Halide’s term rewriting system with program synthesis. Proc. ACM Program. Lang. 4, OOPSLA, Article 166 (nov 2020),
28 pages. https://doi.org/10.1145/3428234

[31] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In NIPS-W.

[32] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
2013. Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing
pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery, New York, NY, USA, 519–530. https:
//doi.org/10.1145/2491956.2462176

[33] James Reed, Zachary DeVito, Horace He, Ansley Ussery, and Jason Ansel. 2022. torch.fx: Practical Program Cap-
ture and Transformation for Deep Learning in Python. In Proceedings of Machine Learning and Systems, D. Mar-
culescu, Y. Chi, and C. Wu (Eds.), Vol. 4. 638–651. https://proceedings.mlsys.org/paper_files/paper/2022/file/
7c98f9c7ab2df90911da23f9ce72ed6e-Paper.pdf

[34] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gratian Lup, Jubi Taneja, and John Regehr.
2018. Souper: A Synthesizing Superoptimizer. arXiv:1711.04422 [cs.PL] https://arxiv.org/abs/1711.04422

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

https://doi.org/10.4230/LIPIcs.ITP.2022.17
https://doi.org/10.4230/LIPIcs.ITP.2022.17
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3445814.3446751
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
http://xavierleroy.org/publi/erts2018_compcert.pdf
http://xavierleroy.org/publi/erts2018_compcert.pdf
http://adam.chlipala.net/papers/AtlPOPL22/
http://adam.chlipala.net/papers/AtlPLDI24/
https://arxiv.org/abs/2306.00229
https://arxiv.org/abs/2306.00229
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/3571209
https://doi.org/10.1145/3428234
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://proceedings.mlsys.org/paper_files/paper/2022/file/7c98f9c7ab2df90911da23f9ce72ed6e-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/7c98f9c7ab2df90911da23f9ce72ed6e-Paper.pdf
https://arxiv.org/abs/1711.04422
https://arxiv.org/abs/1711.04422

29:32 Arora et al.

[35] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic superoptimization. SIGPLAN Not. 48, 4 (mar 2013),
305–316. https://doi.org/10.1145/2499368.2451150

[36] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. 2000. Checking Safety Properties Using Induction and a SAT-
Solver. In Formal Methods in Computer-Aided Design, Warren A. Hunt and Steven D. Johnson (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 127–144.

[37] Gus Henry Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan, Michael Taylor, Luis Ceze, and
Zachary Tatlock. 2021. Pure tensor program rewriting via access patterns (representation pearl). In Proceedings of the

5th ACM SIGPLAN International Symposium on Machine Programming (Virtual, Canada) (MAPS 2021). Association for
Computing Machinery, New York, NY, USA, 21–31. https://doi.org/10.1145/3460945.3464953

[38] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong
Chen, and Zhihao Jia. 2021. PET: Optimizing Tensor Programs with Partially Equivalent Transformations and
Automated Corrections. In 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21).
USENIX Association, 37–54. https://www.usenix.org/conference/osdi21/presentation/wang

[39] Yuting Wang, Pierre Wilke, and Zhong Shao. 2019. An Abstract Stack Based Approach to Verified Compositional
Compilation to Machine Code. Proc. ACM Program. Lang. 3, POPL, Article 62 (jan 2019), 30 pages. https://doi.org/10.
1145/3290375

[40] Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig. 2022. Verified Compilation of C Programs with a Nominal
Memory Model. Proc. ACM Program. Lang. 6, POPL, Article 25 (jan 2022), 31 pages. https://doi.org/10.1145/3498686

[41] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang, Max Willsey, Sudip Roy, and Jacques Pienaar. 2021. Equal-
ity Saturation for Tensor Graph Superoptimization. In Proceedings of Machine Learning and Systems, A. Smola,
A. Dimakis, and I. Stoica (Eds.), Vol. 3. 255–268. https://proceedings.mlsys.org/paper_files/paper/2021/file/
cc427d934a7f6c0663e5923f49eba531-Paper.pdf

[42] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. 2012. Formalizing the LLVM Intermediate
Representation for Verified Program Transformations. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (Philadelphia, PA, USA) (POPL ’12). Association for Computing
Machinery, New York, NY, USA, 427–440. https://doi.org/10.1145/2103656.2103709

[43] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. 2013. Formal Verification of SSA-Based
Optimizations for LLVM. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery, New York, NY, USA,
175–186. https://doi.org/10.1145/2491956.2462164

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 29. Publication date: January 2025.

https://doi.org/10.1145/2499368.2451150
https://doi.org/10.1145/3460945.3464953
https://www.usenix.org/conference/osdi21/presentation/wang
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3498686
https://proceedings.mlsys.org/paper_files/paper/2021/file/cc427d934a7f6c0663e5923f49eba531-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/cc427d934a7f6c0663e5923f49eba531-Paper.pdf
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1145/2491956.2462164

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Preliminaries
	2.2 Need for Automatic Verification
	2.3 Need for Unbounded Verification
	2.4 Key Observation

	3 Overview
	3.1 TensorRight Rewrite Rules
	3.2 Representation in TensorRight DSL
	3.3 Verification

	4 Rewrite Rule Representation
	4.1 Named Axes
	4.2 Aggregated Axes
	4.3 Rewrite Rule

	5 Denotational Semantics
	6 Verification of Rewrite Rules
	6.1 Overview of the Verification
	6.2 Bound Computation Example
	6.3 Bound Computation for the General Case
	6.4 Bounded Verification of Rewrite Rules
	6.5 Verifying Rules with Reduction Operators

	7 Discussion
	8 Evaluation
	8.1 Expressiveness of TensorRight DSL
	8.2 Verification Capabilities of TensorRight
	8.3 Generalizing Rewrite Rules

	9 Related Works
	10 Limitations and Future Work
	11 Conclusion
	12 Data-Availability Statement
	Acknowledgments
	References

