
Inequivalence Checking across C Programs

Thesis submitted by

Jai Arora
2018CS50219

under the guidance of

Prof. Sorav Bansal

in partial fulfilment of the requirements
for the award of the degree of

Bachelor and Master of Technology

July 2023

Department Of Computer Science and Engineering
INDIAN INSTITUTE OF TECHNOLOGY DELHI

THESIS CERTIFICATE

This is to certify that the thesis titled Inequivalence Checking across C-Programs,
submitted by Jai Arora (2018CS50219), to the Indian Institute of Technology Delhi,
for the award of Bachelor and Master of Technology in Computer Science and
Engineering, is a record of bona fide work carried out by him under our supervision at
the Department of Computer Science and Engineering, Indian Institute of Technology Delhi.
The contents of this thesis, in full or in parts, have not been submitted to any other Institute
or University for the award of any degree or diploma.

Prof. Sorav Bansal
Associate Professor
Dept. of Computer Science
Indian Institute of Technology
Delhi
New Delhi - 110016

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. Sorav
Bansal, who introduced me to research in Compilers and Verification. His wealth of knowl-
edge, enthusiasm and perseverance are amazing and have been very motivating. I have much
appreciated the independence he gave me in working on this project, while also giving me
constant feedback on the areas where I needed it the most. Working with him and learning
from him these past two years has been a wonderful and enriching experience.

Furthermore, I am grateful to my family for their unwavering support, understanding, and
encouragement. Their love and belief in me have been the driving force behind my deter-
mination to overcome challenges along this academic journey.

I would like to thank Shubhani Gupta, Abhishek Rose and Indrajit Banerjee for generously
sharing their time and expertise on various things. In particular, I would like to thank
Shubhani for being extremely helpful and always making time to discuss things with me
whenever I was facing technical challenges in my research.

Finally, I am grateful to all my friends for making this journey enjoyable. I am thankful for
the wonderful memories we have made and shall cherish them.

Jai Arora

i

ABSTRACT

We have designed and implemented an automatic and sound approach for Inequivalence
Checking, which is based on the Equivalence Checker Counter. Our approach first tries to
prove the input programs to be equivalent, while collecting inconsistencies throughout the
search. Once the equivalence checker terminates, we try to find input that would trigger these
inconsistencies, which could also lead to observational inequivalence of the two programs.
We designed a Data-Flow Analysis for the same, which is guaranteed to converge. We
evaluate our approach on multiple C library functions, spanning different implementations.
We found multiple bugs in these functions which were previously uncaught. We also find
that our approach compares to the state of the art fuzzing techniques.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES viii

ABBREVIATIONS ix

NOTATION x

1 Introduction 1

2 Background 3

2.1 Data-Flow Analysis . 3

2.1.1 Semilattices . 3

2.1.2 Transfer Functions . 4

2.1.3 DFA Fixed-Point Iteration Algorithm 5

2.2 Control-Flow Graph Representation . 6

2.3 Counter: A Black-Box Equivalence Checker 7

3 Inequivalence Checker 9

3.1 Overview . 9

3.2 Collecting Inconsistencies . 10

3.3 Propagating the Inconsistencies . 11

3.4 Data-Flow Analysis for Inequivalence Checking 12

3.4.1 Notation . 13

3.4.2 Domain of DFA values . 14

3.4.3 Initialization of DFA Values . 14

iii

TABLE OF CONTENTS iv

3.4.4 Meet Operator . 14

3.4.5 Transfer Function . 15

3.4.6 Characteristics of the Algorithm . 16

3.5 Getting Distinguishing Inputs . 16

3.6 Validating the Counterexamples . 17

3.7 Ranking the product-CFGs . 17

3.8 Putting all components together . 18

4 Evaluation 20

4.1 Experimental Setup and Benchmark Selection 20

4.2 Results . 22

4.3 Undefined Behaviour . 24

4.4 Bugs Found . 25

4.4.1 klibc . 25

4.4.2 netbsd . 26

4.4.3 newlib . 27

4.4.4 dietlibc . 28

5 Comparison with Differential Fuzzing 31

5.1 American Fuzzy Lop . 31

5.2 Designing Harnesses . 32

5.3 Evaluation . 33

5.4 Case Studies . 34

5.5 Conclusion . 39

6 An Alternate Approach to Inequivalence Checking 41

6.1 Implementation Overview . 41

6.2 Comparing the two approaches . 42

6.3 Experimental Comparison . 43

6.4 Case Studies . 46

6.4.1 Path Explosion in musl::memcpy 46

6.4.2 CFG-Approach generally requires a low value of loop-bound 46

6.5 Conclusion . 50

© 2024, Indian Institute of Technology Delhi

7 Conclusion, Limitations and Future Work 52

REFERENCES 55

LIST OF TABLES

3.1 Data-Flow Formulation for Inequivalence Checking 16

5.1 afl-fuzz success rate . 33

vi

LIST OF FIGURES

1.1 Equivalence and Inequivalence Checking 1

1.2 Translation Validation . 2

1.3 Differential Testing Setup . 2

2.1 An Example C-Language Program and its Control Flow Graph Representa-
tion . 7

3.1 Inequivalence Setup . 9

3.2 A snapshot of the backtracking search tree 9

3.3 Product-CFG for the programs shown in equation 3.1 12

3.4 The paths p1 and p2 have some common prefix, after which they diverge . 15

3.5 Divide p into two parts such that ω · x ∈ Pν 16

3.6 An example search tree indicating the failed-CFGs and the next candidates 18

4.1 Equivalence Classes for memccpy . 22

4.2 Equivalence Classes for wcschr . 23

4.3 Equivalence Classes for swab . 23

5.1 An example afl-fuzz workflow . 31

5.2 swab: An edge indicates that we were able to find a distinguishing input . 35

5.3 CHARC bugs in memrchr -- red edge indicates that the DEFAULT harness found
a bug, while a blue edge indicates that the {CHARC} harness found a bug. The
dotted case is discussed below . 37

6.1 Alternate Inequivalence Checking Approach 41

6.2 Time Taken to find Inequivalences . 44

6.3 Loop Bounds at which Inequivalences were found 44

6.4 CFG-Approach: Unroll Factors at which we found inequivalence 45

6.5 CFG-Approach: Performance of the Ranking Strategy used 45

6.6 cyclic_23_src. dst-tfg is similar in structure, but has extra branches in
the inner loop body . 48

vii

LIST OF FIGURES viii

6.7 The product program has a more compact structure than the individual pro-
grams . 48

© 2024, Indian Institute of Technology Delhi

ABBREVIATIONS

CFG Control Flow Graph
TFG Tranfer Function Graph
UB Undefined Behaviour
DFA Data-Flow Analysis

ix

NOTATION

∨ Logical Or Operator
∧ Logical And Operator
WP Weakest Precondition Function
µ unroll-factor used by Counter
ν loop-bound
k ce-bound

x

Chapter 1

Introduction

An Equivalence checker is a proof finder. In contrast, an Inequivalence checker would be
interested in identifying a distinguishing input that proves that the input programs are
inequivalent. So, it’s a bug finder.

Both Equivalence checking and Inequivalence checking are undecidable problems in general.
A typical tool (assuming it is sound) would first try to find an equivalence proof. If found,
we are done. Else, it would try and find a distinguishing input. If found, we are done. Else,
we have neither found equivalence nor inequivalence, and we simply give up.

An Equivalence Checker, will either return with a proof of equivalence or just return failure
(in which case we don’t know if the programs are inequivalent or equivalent). With the
Inequivalence Checker, we can get more information about the input programs.

Figure 1.1: Equivalence and Inequivalence Checking

Following are two well-known problems where Inequivalence Checking can be used:

• Translation Validation: The problem of Equivalence Checking has a well-known and
important application in Translation Validation. Because compilers are so complex and
may have bugs, a Translation Validator checks the source code against the machine
code for equivalence, and has the potential to compete with existing approaches to
verified compilation such as CompCert.

2

Figure 1.2: Translation Validation

On the other hand, an Inequivalence checker could be used in Translation Invalidation,
where you try to detect a bug in the compilation.

• Differential Testing: Differential testing validates a set of systems with the same se-
mantics, by comparing their output for a given input. As shown in the diagram, you
pass the same input to a series of systems, and their outputs become oracles for each
other.

Figure 1.3: Differential Testing Setup

If there is an input I, for which Pj(I) ̸= Pk(I), then you have a bug. One could use
the equivalence/inequivalence checker in this setting as well.

We propose an automatic and sound framework on top of the Equivalence Checker tool
Counter [1], to check if the given two programs are Inequivalent.

© 2024, Indian Institute of Technology Delhi

Chapter 2

Background

2.1 Data-Flow Analysis

Code Optimization could either be local (code improvement within a basic block) or global
(code improvement across basic blocks). Most global optimizations are based on Data-
Flow Analyses [2], which are algorithms to gather information about the flow of data along
program execution paths.

The results of data-flow analyses all have the same form: for each instruction in the program,
they specify some property that must hold every time that instruction is executed. The
analyses differ in the properties they compute. For example, a constant-propagation analysis
computes, for each point in the program, and for each variable used by the program, whether
that variable has a unique constant value at that point. This information may be used to
replace variable references by constant values, for instance.

The aim of this section is to study a common framework for data-flow problems, abstractly.
This will allow us to prove properties for an entire family of data-flow problems, once and
for all. The framework also helps us identify the reusable components of the algorithm in
our software design.

A Data-Flow Problem (D, V,⊗, F) is defined by:

• A direction D of the data-flow, which is either FORWARD or BACKWARD

• A Semilattice, which includes a domain of values V and a meet operator ⊗

• A family F of transfer functions from V to V

2.1.1 Semilattices

A semilattice S = ⟨V,⊗⟩ consists of a set of values V and a binary meet operator ⊗ on V

such that for all x, y, z ∈ V :

• x⊗ x = x (Idempotent)

• x⊗ y = y ⊗ x (Commutative)

• x⊗ (y ⊗ z) = (x⊗ y)⊗ z (Associative)

2.1 Data-Flow Analysis 4

A semilattice has a top element, denoted ⊤, such that,

∀x ∈ V, ⊤⊗ x = x

Optionally, a semilattice may have a bottom element, denoted ⊥, such that

∀x ∈ V, ⊥⊗ x = ⊥

The Partial Order for a Semilattice

A relation ≤ is a partial order on a set V if for all x, y, z ∈ V ,

• x ≤ x (Reflexive)

• x ≤ y and y ≤ x implies x = y (Antisymmetric)

• x ≤ y and y ≤ z implies x ≤ z (Transitive)

The pair (V,≤) is called a poset. We can also define a < relation for a poset as:

x < y if and only if x ≤ y and x ̸= y

It is useful to define a partial order ≤ for a semilattice ⟨V,⊗⟩. For all x, y ∈ V , we define

x ≤ y if and only if x⊗ y = x

As the meet operator ⊗ is idempotent, commutative and associative, the defined partial
order ≤ is reflexive, antisymmetric and transitive.

Height of a Semilattice

We may learn something about the rate of convergence of a data-flow analysis problem by
studying the height of the associated semilattice. The height of a semilattice is the largest
number of < relations that would fit in an ascending chain x1 < x2 < · · · < xn.

Showing convergence of an iterative data-flow algorithm is much easier if the semilattice has
finite height. Clearly, a lattice consisting of a finite set of values will have a finite height; it
is also possible for a lattice with an infinite number of values to have a finite height.

2.1.2 Transfer Functions

The family of transfer functions F in a data-flow problem has the following properties:

© 2024, Indian Institute of Technology Delhi

2.1 Data-Flow Analysis 5

• Every function f ∈ F has the form f : V → V

• F contains the identify function:

∃f ∈ F, f(x) = x ∀x ∈ V

• F is closed under composition:

f1, f2 ∈ F implies that f1 ◦ f2 ∈ F

where f1 ◦ f2(x) = f2(f1(x))

Monotone Frameworks

Recall that we require the semilattice ⟨V,⊗⟩ to have a finite height to guarantee conver-
gence of the analysis. We need an additional condition for the convergence guarantee --
monotonicity of the data-flow framework.

Formally, a framework (D, V,⊗, F) is monotone if and only if for all x, y ∈ V and f ∈ F

x ≤ y implies f(x) ≤ f(y)

Equivalently, a framework is monotone if and only if for all x, y ∈ V and f ∈ F

f(x⊗ y) ≤ f(x)⊗ f(y)

2.1.3 DFA Fixed-Point Iteration Algorithm

INPUT: A Data-Flow framework with the following components:

• A data-flow graph, with specially labeled ENTRY and EXIT nodes

• A direction of the data-flow D

• A set of values V

• A meet operator ⊗

• A set of functions F , where fB ∈ F is the transfer function for basic block B

• A constant value vENTRY or vEXIT, representing the boundary condition for forward and
backward frameworks, respectively

OUTPUT: Values in V for IN[B] and OUT[B] for each block B in the data-flow graph

METHOD:

© 2024, Indian Institute of Technology Delhi

2.2 Control-Flow Graph Representation 6

Iterative algorithm for a FORWARD Data-Flow problem:
OUT[ENTRY] = vENTRY

for (each basic block B other than ENTRY): OUT[B] = ⊤
while (changes to any OUT occur) {

for (each basic block B other than ENTRY) {
IN[B] =

∧
P∈pred(B) OUT[P]

OUT[B] = fB(IN[B])

}
}

Iterative algorithm for a BACKWARD Data-Flow problem:
IN[EXIT] = vEXIT

for (each basic block B other than EXIT): IN[B] = ⊤
while (changes to any IN occur) {

for (each basic block B other than EXIT) {
OUT[B] =

∧
S∈succ(B) IN[S]

IN[B] = fB(OUT[B])

}
}

If the algorithm described above converges, then the result is a solution to the data-flow
equations. Moreover, if the framework is monotone and the semilattice has a finite height,
then the algorithm is guaranteed to converge.

2.2 Control-Flow Graph Representation

This section presents the details for the abstract framework named as Control-Flow Graph
(CFG) used for program representation in this thesis.

CFG is a directed graph with nodes and edges. Each node in the CFG representation of a
program corresponds to a program location or program counter (PC) and is denoted by the
symbol n. Each edge in the CFG corresponds to transition from one program location to
another and is denoted using ω[n → n′] from node n to node n′. Each edge (representing
a transition) is labeled with an edge-condition that must be true to trigger that transition,
a transfer function that specifies how the (abstract) machine’s state is modified across that
transition, and an action that indicates the program’s potential interactions with the en-
vironment (e.g., program exit, unspecified procedure call). The CFG for a program has a
start node (nSTART) at which it begins execution, and a (potentially empty) set of exit nodes.

© 2024, Indian Institute of Technology Delhi

2.3 Counter: A Black-Box Equivalence Checker 7

int a[1024], b[1024];
C0: void divP() {
C1: for (int i = 0; i < 1024; ++i) {
C2: a[i] = b[i] / 2;
C3: }
EC: }

(a) C Program
(b) C Program CFG. C0 is the entry node

and EC is the exit node

Figure 2.1: An Example C-Language Program and its Control Flow Graph Representation

Figure 2.1 shows an example C-language program and its control-flow graph representation.
The example program sets the elements in the global array a to half of the value of elements
in the global array b. In the CFG representation shown in fig. 2.1b, the edge conditions and
the transfer function are shown for each edge. As an example, the edge condition for the
edge (C2 → C4) is (i < 1024) and the transfer function for the edge (C4 → C2) is (i++). In
this example CFG, there is a single exit edge (C2 → EC) and the action α associated with
this edge returns the memory region for global variables a and b. The labels (C0), (C2),
(EC), etc., in the C-program denote the program locations or PCs and are used to represent
the nodes in the CFG. The CFG representation used in this work is similar to the Transfer
Function Graph (TFG) representation used by prior work [1].

2.3 Counter: A Black-Box Equivalence Checker

This section presents the details for Counter [1], which is a counterexample-guided correla-
tion algorithm for Translation Validation. Our proposed approach builds on top of Counter.

Translation validation (TV) verifies the result of every compilation; this approach stands
in contrast with certified compilation where the compiler’s logic is verified for all possible
input programs. Unlike certified compilation where the compiler usually needs to be written
from scratch, TV has the potential to reuse an existing off-the-shelf compiler and validate its
input-output behavior for every compilation. For most programs/compiler-transformations,
it usually suffices to restrict oneself to bisimilarity checking, where the algorithm proceeds
by correlating the transitions (or paths) in the two programs and identifying inductive re-
lational predicates (or invariants) between variables (state-elements) of the two programs

© 2024, Indian Institute of Technology Delhi

2.3 Counter: A Black-Box Equivalence Checker 8

at the endpoints of the correlated transitions. We call the endpoints of the correlated tran-
sitions, correlated PCpairs, given that they are formed by pairing two program locations
or PCs of the respective programs. If these correlations and relational invariants ensure
equivalent observable behavior (e.g., identical sequence of I/O events, identical return value
and returned heap state), then we have obtained a proof (or witness) of equivalence (and
bisimilarity). This proof, involving correlations and invariants, can be represented either as
a (bi)simulation relation or as a product program, both of which are equivalent representa-
tions.

A product program correlates the transitions in one program with the transitions in another
program, as though they execute correspondingly in lockstep. We use the CFG represen-
tation to show the product program, which we also call a product-CFG; multiple product-
CFGs are possible for any same pair of programs. Each edge in a product-CFG encodes
the PC-transition correlations across the two programs. Given a product-CFG, equivalence
checking involves inferring inductive invariants at each node of the product-CFG and then
checking if the inferred invariants are strong enough to prove equivalent observable behavior
at intermediate program locations (e.g., identical arguments to calls to an external function)
or at program exit (e.g., identical return values and identical heap states).

There exists a trade-off between the amount of computational effort spent in identifying
the “right” product-CFG and the effort spent in identifying the required inductive invari-
ants. Counter is a counterexample-guided algorithm, which efficiently searches this space
of potential product-CFGs to yield a provable bisimulation relation. It uses an incremental
approach for constructing the required product-CFG, where an edge is added at each step
to the partial product-CFG constructed so far. It is based on a best-first search procedure
that uses counterexample-guided pruning to reduce the search space of candidate product-
CFGs and counterexample-guided ranking to prioritize remaining correlation candidates. It
also consists of a scalable yet static invariant inference algorithm, Sifer, to infer precise and
expressive invariants between programs that have large syntactic gap across them. It is
implemented as a data-flow analysis and thus is incremental in itself.

Counter can compute equivalence across both vectorizing transformations and register re-
alloaction in the presence of multiple loops with potential nesting and control-flow in both
programs.

© 2024, Indian Institute of Technology Delhi

Chapter 3

Inequivalence Checker

In this chapter, we describe our proposed automatic and sound Inequivalence Checking
procedure, built on top of the Equivalence Checking tool Counter. This is implemented as
a part of the eq32 tool.

Currently, our approach can handle C-to-C and C-to-Assembly Inequivalence Checking.

3.1 Overview

When given a source (denoted as src) and a destination (denoted as dst) program, eq32 first
converts them into their respective CFGs and then uses Counter to incrementally construct
a Product CFG. We first try to prove that the programs are equivalent.

Figure 3.1: Inequivalence Setup

Counter uses a backtracking based best-first search to try to find a Complete Product-
CFG. An example snapshot of the search tree is shown below. Each node in the search tree
represents a partially-constructed product-CFG, and the outgoing edges at a node represent
the potential possibilities for the newly added edge.

Figure 3.2: A snapshot of the backtracking search tree

3.2 Collecting Inconsistencies 10

During this search, we try to find CFGs where there is an inconsistency. For instance, the
return values being unequal at the exit node could be an inconsistency. More inconsistencies
are described in Section 3.2. For inconsistency that we collect, we use a data-flow analysis
to propagate it backwards. In the end, we can construct an inequivalence condition at the
start-PCpair. If the condition is satisfiable, then we would have found a potential bug.

The process is described in more detail in Sections 3.2-3.8.

3.2 Collecting Inconsistencies

As discussed in Section 3.1, eq32 takes the input programs and converts them into their
CFGs. The CFGs of the individual programs are referred to as Transfer Functions Graphs
(TFGs). We then try to incrementally construct a product-CFG in an attempt to prove
equivalence.

At each step of the backtracking search, we identify a candidate correlation. Let the corre-
lation by represented by an outgoing product-CFG edge ω = n→ nd = (ξsrc, ξdst). We try
to figure out if the correlation is inconsistent. We will call these inconsistencies as failconds
(short for failure conditions), and the node as failcond-pc. In the following subsections, we
discuss the different kinds of failure conditions.

Exit Node Inconsistencies

This is applicable when the candidate product-CFG has an exit PCpair (a node correlat-
ing the exit PCs of the input TFGs). If the inferred invariants at the exit node are not
strong enough to prove equivalent observable behaviour, then we have an inconsistency. The
following cases may arise:

• Return values are unequal: If the inferred invariants do not ensure that the return
values are equal, then our failcond is retsrc ̸= retdst

• Heap states are unequal: If the inferred invariants do not ensure that the heap states
at exit are equal, then our failcond is Hsrc ̸= Hdst

In both these cases, our failcond-pc will be the exit node.

Heap Inconsistencies

If the heap states Hsrc and Hdst are not related by the invariants at the node nd, then Counter
eliminates that product-CFG. This is based on the premise that the heap states need to be

© 2024, Indian Institute of Technology Delhi

3.3 Propagating the Inconsistencies 11

correlated at program exit, and if they are not correlated at an intermediate node, then
there is little hope for them to be correlated at exit.

We consider this as an inconsistency. Our failcond would be Hsrc ̸= Hdst and failcond-pc
would be nd.

Correlation Inconsistencies

By definition, if an edge ω = (ξsrc, ξdst) is traversed in the product-CFG, it implies that one
of the paths in ξsrc is traversed in src program and one of the paths in ξdst is traversed in
dst program.

While this property defines the general space of potential correlations, Counter restricts
this space further through a correlation criterion to achieve better tractability. It restricts
correlations by requiring that ξsrc can be correlated with ξdst through a product-CFG edge
ω = (ξsrc, ξdst) only if the following property holds: if any of the paths in ξdst is traversed
in dst program, then one of the paths in ξsrc in src program must be traversed.

This correlation criteria is checked for all the edges in the product-CFG. For an edge ω =

n→ nd = (ξsrc, ξdst), we check if the following condition holds,

INVn ⇒ (pscondξdst → pscondξsrc)

where pscondξ represents the path-set condition of ξ and INVn represents the inferred in-
variants at node n. If this check fails, then this condition becomes our failcond and the
failcond-pc would be n.

We may encounter a lot of such failconds in the search, so we store the inconsistent product-
CFG and the failcond whenever we encounter one. Note that in the last two cases, the
product-CFG would be incomplete. We would like to determine if this inconsistency is due
to the imprecision of our equivalence checking or because the programs are inequivalent.

3.3 Propagating the Inconsistencies

Now we will assume that the equivalence checker has finished its search, and we have collected
some failconds. We would like to determine if these inconsistencies are due to the imprecision
of our equivalence checking or because the programs are inequivalent.

One way is to compute the weakest predicate Pn at each node n that is stronger than the
weakest precondition of the failcond. In other words, if Pn is satisfied at node n, then the

© 2024, Indian Institute of Technology Delhi

3.4 Data-Flow Analysis for Inequivalence Checking 12

failcond would definitely get triggered in the product-CFG. If PSTART (i.e. the predicate at
the start node) is non-empty, then we have a potential bug.

We will see the working of this approach with a small example. Consider the following
acyclic input programs:

src
df
= λx:int[3 ∗ x]

dst
df
= λx′:int[x′ + 10]

(3.1)

Clearly the programs are inequivalent. The product-CFG for these programs would be a
single-edge CFG as shown in Figure-3.3. The failcond in consideration will be x ̸= x′,
since we won’t be able to ensure that the return values are equal. The failcond-pc will be
(EC,EA), the exit PCpair.

Figure 3.3: Product-CFG for the programs shown in equation 3.1

We then propagate the inconsistency backwards by simply computing the weakest precon-
dition along the product-CFG edge, and we get the condition 3x ̸= x′ + 10. Now, to check
if it is satisfiable, we will add an extra condition that the inputs were equal at the start
(x = x′).

3x ̸= x′ + 10
∧

x = x′ ⇒ 3x ̸= x+ 10⇒ x ̸= 5

We get x ̸= 5 as a sufficient condition for inequivalence, and it is easy to check that any value
of x satisfying this condition will trigger a bug for these two programs. This intuition will
form the basic idea of our analysis discussed in the next section. Since the input programs
may have loops, the product-CFG may have loops in it, and it is not easy to simply compute
the weakest precondition across a loop.

3.4 Data-Flow Analysis for Inequivalence Checking

To apply the idea discussed in Section 3.3 to general programs, we design a backwards
data-flow framework (discussed in section 2.1) which uses the Kildall’s worklist algorithm
to compute the maximum fixed-point (MFP) of the data-flow formulation. The worklist

© 2024, Indian Institute of Technology Delhi

3.4 Data-Flow Analysis for Inequivalence Checking 13

algorithm is an optimized algorithm as compared to the naive iterative algorithm for solving
the data-flow formulation for a given CFG. It is based on the premise that input data-flow
value at a CFG node is directly determined by the output values at its predecessor nodes and
will remain same if the output value of any of the predecessors has not changed. Therefore,
instead of re-computing the values for all nodes at each iterative step, the Kildall’s worklist
algorithm maintains a list of nodes to be processed as a worklist. The algorithm initializes
the worklist with the start nodes (or exit nodes in case of a backward data-flow analysis).
In each iteration, a node is removed from the worklist and the output value is computed
for that node. If the newly computed output value is different from the previous output
value for that node, its successors are added to the worklist. For efficiency, a node should
not be present in the worklist more than once. We discuss our framework in the following
subsections.

3.4.1 Notation

A desired property of the data-flow framework is convergence, the conditions for which
are discussed in Section-2.1. For convergence, we need the paths in our analysis to have
a bounded length. Each straight-line path is represented as a list of edges. Let ν be a
parameter. Our set of representable paths will be parameterised by ν. Consider the set Pν

defined as:
Pν

df
= {paths with frequency of each edge ≤ ν} (3.2)

Note that the size of this set is finite. We denote this parameter ν by loop-bound. To give
an example, the path e1 · e2 · e1 lies in P2, while the path e1 · e2 · e1 · e1 does not belong to
set the P2, since the frequency of the edge e1 is 3.

Let f be the failcond in consideration. Define a set of expressions E by the following
grammar:

E → ⊥ | WP(f, p), p ∈ Pν | e1 ∨ e2 (3.3)

The size of E is also finite, although it is exponential in |Pν |. Each expression in E can be
represented as a finite disjunction of weakest preconditions of f across some paths in Pν .
So, we can represent each expression by a set of paths in Pν . The representation is defined
inductively as follows:

⊥ ≡ {}
f ≡ {ϵ}

WP(f, p) ≡ {p}
e1 ∨ e2 ≡ S1 ∪ S2, where e1 ≡ S1, e2 ≡ S2

Note that the sets Pν and E are dependent on the product-CFG, the parameter ν and the

© 2024, Indian Institute of Technology Delhi

3.4 Data-Flow Analysis for Inequivalence Checking 14

failcond f . So we will assume that they are fixed.

3.4.2 Domain of DFA values

The values computed through the DFA are represented by a tuple (p, e), where p ∈ Pν and
e ∈ E . The semantics of these values are:

• If we have a value (p, e) at a node n, then if we take the path p and e holds at the end
of the path, then the failcond f will definitely get triggered

• The above point implies that the path p should start at the node n

We will maintain these semantics as invariants throughout our analysis. The set of values
V for our framework is defined below. The set contains a special value ⊤ and the number
of elements in this set is again finite.

V = {(p, e) | p ∈ Pν , e ∈ E} ∪ {⊤}

3.4.3 Initialization of DFA Values

The direction of our DFA is BACKWARDS. The boundary condition initializes the value at
the failcond-pc to the pair (ϵ, f), where ϵ denotes the empty path. This is consistent with
the semantics discussed in Section-3.4.2. For each node n other than the failcond-pc, we
initialize its value to ⊤, since we do not have any information at the other nodes.

3.4.4 Meet Operator

Consider two values (p1, e1) and (p2, e2) at node n. We can infer the following from their
semantics:

• p1 starts at n and if we take the path p1 and e1 holds at the end of p1, then f will
definitely get triggered

• p2 starts at n and if we take the path p2 and e2 holds at the end of p2, then f will
definitely get triggered

We want to combine these two values using the meet operator ⊗, so that it is consistent with
the value semantics. Without loss of generality, assume that p1 and p2 have the following
structure.

© 2024, Indian Institute of Technology Delhi

3.4 Data-Flow Analysis for Inequivalence Checking 15

Figure 3.4: The paths p1 and p2 have some common prefix, after which they diverge

Given this structure, the most intuitive path in the value after meet would be the longest
common prefix of p1 and p2. To make sure we maintain the value semantics, we need some
expression at the intersection node n′, which would be WP(e1, x) ∨ WP(e2, y).

Note that we also need to make sure that WP(e1, x)∨WP(e2, y) ∈ E . Let e1 ≡ S1 and e2 ≡ S2,
then

WP(e1, x) ∨ WP(e2, y) ≡ (x · S1) ∪ (y · S2) (3.4)

where p · S represents all paths of S prefixed with p. In equation-3.4, some paths may lie
outside Pν due to the prefix operation. Define a function WPν inductively as follows:

WPν(⊥, p) = WP(⊥, p)

WPν(WP(f, q), p) =

WP(f, p · q) p · q ∈ Pν

⊥ p · q /∈ Pν

WPν(e1 ∨ e2, p) = WPν(e1, p) ∨ WPν(e2, p)

This functions filters the paths that lie outside Pν . We can now define the meet operator as
follows:

(p1, e1)⊗ (p2, e2)
df
= (LCP(p1, p2), WPν(e1, x) ∨ WPν(e2, y)) (3.5)

where LCP(p1, p2) denotes the longest common prefix of p1 and p2.

3.4.5 Transfer Function

The transfer function fω for a path ω in the CFG is described here. Let (p, e) be the value
that needs to be transferred. Consider the following two cases:

• ω · p ∈ Pν : in this case, we can simply return (w · p, e) and the semantics are still
maintained

• ω · p /∈ Pν : in this case, we cannot return (w · p, e) because this value does not lie in
the DFA domain.

© 2024, Indian Institute of Technology Delhi

3.5 Getting Distinguishing Inputs 16

Figure 3.5: Divide p into two parts such that ω · x ∈ Pν

Let ω · x be the maximal prefix of ω · p such that ω · x ∈ Pν . We return this path and
then shift the expression to some other node. The returned value is (ω · x, WPν(e, y))

The transfer function fω is summarized below.

fω((p, e)) =

(ω · p, e) ω · p ∈ Pν

(ω · x, WP(e, y)) ω · p /∈ Pν , where p = x · y and ω · x is the

maximal prefix of ω · p which lies in Pν

(3.6)

3.4.6 Characteristics of the Algorithm

The overall DFA Formulation is shown below.

Domain {(p, e) | p ∈ Pν , e ∈ E} ∪ {⊤}
Direction BACKWARDS
Boundary Condition in[failcond-pc] = {(ϵ, failcond)}
Initialization to Top in[n] = ⊤
Transfer Function fω as specified in Equation-3.6
Meet Operator ⊗ As specified in Equation-3.5

Table 3.1: Data-Flow Formulation for Inequivalence Checking

The meet operator described in Section-3.4.4 is idempotent, commutative and associative.
The semilattice ⟨V,⊗⟩ has a finite height and the family of transfer function described in
Equation-3.6 is monotonic. These properties ensure that our DFA Framework will converge.

3.5 Getting Distinguishing Inputs

After our Data-Flow Analysis has converged, let (p, e) denote the value computed at the
start PCpair. Then using the DFA value semantics, if we take the path p and e is true at
the end of the path, then the failcond f will definitely get triggered. So, our inequivalence
condition would be WP(e, p). We also need to assert at the start that both the programs

© 2024, Indian Institute of Technology Delhi

3.6 Validating the Counterexamples 17

have equal input arguments and equal input heap states. Our final inequivalence condition
becomes:

WP(e, p) ∧ argsrc = argdst ∧ Hsrc = Hdst

The condition is then encoded as an SMT condition and sent to three off-the-shelf SMT
solvers spawned in parallel -- z3, Yices2 and cvc4. For unsat results, we return as soon
as the first solver finishes. For sat results, we opportunistically try and collect multiple
counterexamples.

Note: The value (p, e) at the start PCpair is equivalent to WP(e, p). Let e ≡ S, then
WP(e, p) ≡ p · S. So, we have essentially collected the set of paths p · S and compute the
weakest precondition of f across each of the paths in p · S.

3.6 Validating the Counterexamples

As discussed in Section-3.2, our product-CFG would be incomplete if the failcond arises
from a heap inconsistency or a correlation failure, in which case the failcond-pc will not
be the exit PCpair. By soundness of our Data-Flow framework, any counterexamples that
we get will definitely trigger the failure condition f . But f may not imply observational
inequivalence, so we need to verify the counterexamples that we get. So, we translate the
counterexample across both of the input programs and check if they lead to unequal return
values or unequal heap states at the end.

The execution traces of the counterexamples triggering these failconds could be really large,
so the translation could take a lot of time. So, as a heuristic, we bound the magnitude of
all inputs. More specifically, for each input argument a, we put the following constraint:

lshr(a, DWORD_LEN - k) == 0

This constrains the top k bits of a to be zero. We denote this parameter k by ce-bound. This
also enforces signed integer values to be always positive. Note that this is only a heuristic and
does not guarantee that the counterexamples would have finite execution traces after this.
For instance, strlen(const char* s) takes a pointer to a string as input. If we restrict
the top-k bits of s to 0, then only the magnitude of the pointer address gets bounded. The
actual runtime of the function depends on the characters in the string pointed to by s.

3.7 Ranking the product-CFGs

We may encounter a lot of inconsistencies while incrementally constructing the product-
CFG. We collect the inconsistent product-CFGs and the respective failconds and then run

© 2024, Indian Institute of Technology Delhi

3.8 Putting all components together 18

the Data-Flow Framework (Section 3.4-3.6) on each of those product-CFGs. Since the
number of failed-CFGs could be exponential in the size of the input programs, we need to
rank them based on some heuristic so that we try out the more promising candidates first.
We use the following insights for our ranking heuristic:

• Correlation Failures: if our failcond arises from a correlation inconsistency as discussed
in Section-3.2, then we rank them lower than the other inconsistencies. The premise
for this is that we are less likely to get distinguishing inputs from correlation failures
as compared to the ones which directly correspond to observational inequivalence

• Observing the best-first search tree pattern: the basic idea is that for a particular
failed-CFG g, the higher the relative height of the next candidate, the better its rank
would be.

In other words, if we have come far down in the search tree and then we fail and
move to a higher location, then this is a good candidate for inequivalence checking.
Any candidate that is good for equivalence checking, is also good for inequivalence
checking.

rank(g) ∝ depth(g)− depth(next_candidate(g))

In the example shown below, root.A3.B1.C1 would be better ranked than root.A1
as its successor is higher.

Figure 3.6: An example search tree indicating the failed-CFGs and the next candidates

3.8 Putting all components together

Using the algorithms discussed in Section 3.2-3.7, we now combine them into one procedure
as follows:

© 2024, Indian Institute of Technology Delhi

3.8 Putting all components together 19

Algorithm 1: Inequivalence Checking Algorithm based on Counter

1 Function ineqChecking(src, dst, µ, νmax):
2 π, Ω← bestFirstSearch(src, dst, µ);
3 if π ̸= null then
4 return EQUIV, {};
5 end
6 heuristic_sort(Ω);
7 ν ← 1;
8 while ν ≤ νmax do
9 foreach cg ∈ Ω do

10 Γce ← computeIneq(cg, ν);
11 if Γce ̸= ϕ and valid(Γce) then
12 return INEQ, Γce;
13 end
14 end
15 ν ← ν ∗ 2;
16 end
17 return FAIL, {};

The inputs to the top-level procedure ineqChecking() are input programs src and dst, the
unroll-factor µ as used by Counter and the maximum value of loop-bound νmax. It returns
two values, the first being the result returned by the tool (one of EQUIV, INEQ or FAIL) and
the second being a set of distinguishing inputs for the two programs.

We first call bestFirstSearch(), the top level procedure of Counter to check for equiva-
lence. If the procedure returns a non-empty, complete product-CFG, then we return EQUIV.
If not, then the product-CFG would be empty and we would have a set of failed-CFGs, Ω.
We then sort Ω by the ranking heuristic described in Section-3.7.

The algorithm then needs to run the DFA on each of the failed-CFGs. Choosing an appro-
priate value of ν could be tricky, so we first start from a low value (1 in this case), and double
it in each iteration till we reach νmax. computeIneq() then runs the data-flow analysis for
the given cg and the loop bound ν, and returns a set of counterexamples using the algorithm
described in Section-3.5. If the set of counterexamples is non-empty and valid (checked using
Section-3.6), then we return INEQ. If we do not find any valid counterexamples from any
failed-CFG, then we return FAIL.

© 2024, Indian Institute of Technology Delhi

Chapter 4

Evaluation

4.1 Experimental Setup and Benchmark Selection

We evaluate our inequivalence checking approach on functions from 9 different C library
implementations which are listed here:

• glibc v2.37 [3]: the GNU C Library

• dietlibc v0.34 [4]: an alternative small implementation of the C standard library
(MMU-less)

• BSDlibc: various implementations distributed with BSD-derived operating systems
such as FreeBSD [5], NetBSD [6] and OpenBSD [7]

• klibc v2.0.11 [8]: primarily for booting Linux systems

• musl v1.2.3 [9]: another lightweight C standard library implementation for Linux
systems

• newlib v4.3.0 [10]: a C standard library for embedded systems (MMU-less)

• µClibc-ng v1.0.42 [11]: an embedded C library

We considered the implementations of 52 C library functions from these 9 libraries, which
broadly fall into 3 categories:

• string functions: strlen, strlcpy, strrchr, strcasecmp, . . .

• memory functions: memcpy, memccpy, memset, memrchr, . . .

• wide-char functions: wcschr, wcslen, wcsncat, wcsncpy, . . .

Some of these libraries have multiple implementations of the same function. For instance,
newlib has two implementations of memrchr: SMALL (when optimising for code size) and
FAST (when optimising for runtime).

For each function, our goal is to use the equivalence checker and the inequivalence checker to
categorize all implementations into equivalence classes. We do so by running our tool for each
possible pair in the list of implementations, and keeping track of equivalence classes. Initially,
all implementations are in a separate equivalence class. If two implementations are proven

4.1 Experimental Setup and Benchmark Selection 21

equivalent, then we merge their equivalence classes, else if they are proven inequivalent, then
we mark them as inequivalent.

For each selected implementation pair, we convert them into their unoptimized LLVM IR
(generated by clang -O0). Since we don’t know whether a given pair is equivalent or
inequivalent, choosing an appropriate value of the unroll-factor µ and the loop-bound ν

could be tricky. For an equivalent pair, choosing a low value of unroll-factor may not be
sufficient. While for an inequivalent pair, if we choose a high value of unroll-factor, then
we may spend a lot of time trying to prove its equivalence and then run our inequivalence
procedure. So, we start from a low value of unroll factor and increase it iteratively. This is
described by the algorithm below:

Algorithm 2: Inequivalence Benchamrking
Input: The input programs src, dst, max unroll factor µmax, max loop bound νmax

1 µ← 1;
2 while µ ≤ µmax do
3 res, Γce ← ineqChecking(src, dst, µ, νmax);
4 if res ∈ {EQUIV, INEQ} then
5 return res;

//rerun by switching src and dst

6 res, Γce ← ineqChecking(dst, src, µ, νmax);
7 if res ∈ {EQUIV, INEQ} then
8 return res;
9 µ← µ ∗ 2;

10 end
11 return FAIL;

Counter’s correlation algorithm is asymmetric since it allows for a one-to-many mapping
from nodes in src to nodes in dst. So, while benchmarking, it is essential to re-run the tool
by switching the source and destination programs. We used a timeout of 60 minutes for
each call to ineqChecking(), with a memory limit of 32GB. We set µmax to 32, νmax to 16
and ce-bound (Section-3.6) to 22 (which would set the top 22 bits of all input arguments
to 0).

After finishing benchmarking, we generate equivalence checking graphs (shown in the later
sections), which have the following properties:

• Implementations in the same node are in the same equivalence class, and hence are
observationally equivalent

• A blue edge between classes denotes that they are inequivalent

• A dashed red edge between classes denotes that we don’t know if they are equivalent
or inequivalent

© 2024, Indian Institute of Technology Delhi

4.2 Results 22

4.2 Results

In this section, we will discuss some of the functions and how their implementations have
been sorted into equivalence classes.

memccpy

The memccpy specification [12] states the following

void *memccpy(void *s1, const void *s2, int c, size_t n);

The memccpy() function shall copy bytes from memory area s2 into s1, stopping
after the first occurrence of byte c (converted to an unsigned char) is copied,
or after n bytes are copied, whichever comes first. If copying takes place between
objects that overlap, the behavior is undefined.

The equivalence classes computed for memccpy are shown below.

Figure 4.1: Equivalence Classes for memccpy

We found 4 equivalence classes. The one with freebsd is the correct implementation because
they follow the specifications. We found two bugs in dietlibc and newlib_fast (discussed
in the later sections). glibc is in a disconnected component since it has function calls and
our tool cannot handle this case.

wcschr

The wcschr specification [13] states the following

wchar_t* wcschr (wchar_t* ws, wchar_t wc);

Returns a pointer to the first occurrence of the wide character wc in the C wide
string ws. The terminating null wide character is considered part of the string.
Therefore, it can also be located in order to retrieve a pointer to the end of a
wide string.

© 2024, Indian Institute of Technology Delhi

4.2 Results 23

The equivalence classes computed for wcschr are shown below.

Figure 4.2: Equivalence Classes for wcschr

We found 4 equivalence classes. The one with freebsd is the correct implementation be-
cause they follow the specifications. We found one bug in dietlibc (discussed in the later
sections). The indicated bug with glibc is invalid because we find a counterexample where
the input pointer was null, which does not correspond to a valid C input. musl is in a
disconnected component since it has function calls and our tool cannot handle this case.

swab

The swab specification [14] states the following

void swab(const void *restrict from, void *restrict to, ssize_t n);

The swab() function copies n bytes from the array pointed to by from to the
array pointed to by to, exchanging adjacent even and odd bytes.

This function does nothing when n is negative. When n is positive and odd, it
handles n-1 bytes as above, and does something unspecified with the last byte.
(In other words, n should be even.)

The equivalence classes computed for swab are shown below.

Figure 4.3: Equivalence Classes for swab

© 2024, Indian Institute of Technology Delhi

4.3 Undefined Behaviour 24

We found multiple equivalence classes. The inequivalence between freebsd and newlib
occurs due to the undefined behaviour mentioned in the specification (n should be even,
so it is not a valid bug). We also found a bug in netbsd (discussed later). The other
inequivalences occur due to the following two reasons:

• Incorrect swapping: if the from and to memories coincide, then it reduces to in-place
swapping of bytes in the input memory. dietlibc has the following code inside the
byte-swap loop:

...
for (i=0; i<nbytes; i+=2) {

d[i]=s[i+1];
d[i+1]=s[i];

}
...

The swapping without a temporary variable, which would be incorrect if from == to.

• Direction of swapping: if the input memories overlap (and don’t coincide), then the
direction of the copy matters. For instance, if from < to, then from will overwrite
itself while doing a forward copy, while a backwards copy will not. Some of the im-
plementations (freebsd, musl, . . .) do a forward copy, while glibc does a backwards
copy, leading to a number of inequivalences as shown in Figure 4.3.

Note that since memory overlap is also undefined behaviour for swab, most of these inequiv-
alences may not be valid.

4.3 Undefined Behaviour

We found 40 blue edges across all the functions that we tried. But not all the blue edges may
correspond to valid bugs. Currently, we say that a given pair of programs in inequivalent
if there is an input that leads to unequal return values or unequal heap states at the end.
But if we have the function specifications and the C language specifications into account,
then the programs may not be inequivalent. For instance, as discussed in Section-4.2, if the
input memories overlap, then the behaviour is undefined.

We encountered 3 types of Undefined Behaviour conditions in the benchmarks:

• Memory Area Overlap: This applies to benchmarks like memccpy [12], memcpy, strcpy,
swab, etc. The C-Language specification [15] also mentions these conditions

• Valid Pointer Values: The C-Language specification [15] states the following string
function conventions

Unless explicitly stated otherwise in the description of a particular func-
tion in this subclause, pointer arguments on such a call shall still have valid

© 2024, Indian Institute of Technology Delhi

4.4 Bugs Found 25

values, as described in 7.1.4. On such a call, a function that locates a char-
acter finds no occurrence, a function that compares two character sequences
returns zero, and a function that copies characters copies zero characters.

This applies to benchmarks like strlen, strnlen, wcschr, stpncpy, etc.

• Number of bytes should be even: This applies to swab, that the number of input bytes
should be even

Our tools allows us to put preconditions at the start of the programs (referred to as assumes).
The solution to this problem is to put assumes corresponding to each Undefined Behaviour
condition in the benchmarking. After putting the assumes, we found that 18 blue edges are
still valid, and we have reported bugs in 11 function implementations so far.

As for the other bugs triggered due to Undefined Behaviour, they could still be useful to
us. Programmers rarely care about function specifications. Failure to comply with these
specifications has been a significant source of bugs in the past. Most notably, in glibc 2.13,
a performance optimization of memcpy() on some platforms (including x86-64) included
changing the order in which bytes were copied from src to dest. This change revealed
breakages in a number of applications that performed copying with overlapping areas. Under
the previous implementation, the order in which the bytes were copied had fortuitously
hidden the bug, which was revealed when the copying order was reversed [16].

4.4 Bugs Found

This section summarizes the valid bugs that we found across different C library implemen-
tations. The bug-reports can be found here.

4.4.1 klibc

We found a bug in the strrchr implementation of klibc. Linux manpage [17] for strrchr()
specifies the following:

char *strrchr(const char *s, int c);

The strrchr() function returns a pointer to the last occurrence of the character
c in the string s. The terminating null byte is considered part of the string, so
that if c is specified as ‘\0’, this function returns a pointer to the terminator.

klibc’s implementation does not follow this and thus gives wrong output when c is ‘\0’.
An example input is shown below:

© 2024, Indian Institute of Technology Delhi

https://github.com/compilerai/bug-reports

4.4 Bugs Found 26

const char src[] = {128, '\0'};
char *ret = strrchr(src, 0);
if (!ret) {

printf("BUG!\n");
}

We reported this bug and it was fixed in klibc v2.0.12.

4.4.2 netbsd

We found a bug in the swab implementation of netbsd. The Linux manpage [14] for swab()
specifies the following:

void swab(const void *restrict from, void *restrict to, ssize_t n);

The swab() function copies n bytes from the array pointed to by from to the
array pointed to by to, exchanging adjacent even and odd bytes.

This function does nothing when n is negative. When n is positive and odd, it
handles n-1 bytes as above, and does something unspecified with the last byte.
(In other words, n should be even.)

netbsd’s implementation stores the half of n, the number of swaps operations to be made,
in a variable len. It rounds len to a multiple of 8, and then unroll the loop to execute 8
steps in a single iteration. The rounding operation is done incorrectly, as shown below. As
it can be seen, it always decrements the value of len, and then checks if it is a multiple of
8. This leads to one less swap than expected.

/* round to multiple of 8 */
while ((--len % 8) != 0)

STEP;

An example input is shown below:

const char src[] = {90, 91, 1, 2};
char dst[4] = {'A', 'B', 'C', 'D'};
swab(src, dst, 4);
// Expected values at dst: {91, 90, 2, 1}
if (dst[0] != 91 || dst[1] != 90 || dst[2] != 2 || dst[3] != 1) {

printf("BUG!\n");
}

© 2024, Indian Institute of Technology Delhi

4.4 Bugs Found 27

We reported this bug and it was fixed on their official git repository. When our fix was
accepted, the NetBSD devs replied with the following:

Evidently the previous definition, presumably tightly optimized for 1980s-era
compilers and CPUs, was too hard to understand, because it was incorrectly
tested for two decades and broken for years.

This just shows that the bugs are usually very subtle and hard to catch, and sometimes, the
specifications are not properly followed. They also added the following comment on their
implementation after the fix [18]:

According to POSIX (2018), the behaviour is undefined if src and dst overlap.
However, there are uses in-tree (xsrc/external/mit/xfwp/dist/io.c) that
rely on swab(ptr, ptr, n) to do the swabbing in-place. So make sure this
works if src == dst.

So, even though the src == dst triggers UB, we still might want to enforce a specified
behaviour of the function when UB is triggered.

4.4.3 newlib

We found a bug in the memccpy FAST implementation of newlib. This implementation
is enabled when the macros PREFER_SIZE_OVER_SPEED and __OPTIMIZE_SIZE__ are not
defined. The memccpy specification [12] states the following:

void *memccpy(void *s1, const void *s2, int c, size_t n);

The memccpy() function shall copy bytes from memory area s2 into s1, stopping
after the first occurrence of byte c (converted to an unsigned char) is copied,
or after n bytes are copied, whichever comes first. If copying takes place between
objects that overlap, the behavior is undefined.

The FAST implementation converts c to signed char (stored in endchar) and computes a
mask as follows:

for (i = 0; i < LITTLEBLOCKSIZE; i++)
mask = (mask << 8) + endchar;

This is used to detect endchar in one long word and is supposed to represent a word whose
each byte has the same value as endchar. But if the input character lies in the extended
ASCII set, then endchar is negative, which leads to an incorrect mask computation. This

© 2024, Indian Institute of Technology Delhi

4.4 Bugs Found 28

leads to the character c not being detected, more bytes are copied to dst than expected.
We reported this bug and our fix was accepted.

An example input is shown below:

const char src[] = {1, 2, 3, 4, 5, 192, 6, 7};
char dst[8] = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'};
memccpy(dst, src, 192, 8);
if (dst[7] != 'H') {

printf("BUG!\n");
}

4.4.4 dietlibc

Most of the bugs in dietlibc were due to missing char* or unsigned char* typecasts.
The bug reports can also be found here.

memchr

We found a bug in the memchr implementations present in the contrib/ directory of
dietlibc (different from the ones present in the lib/ directory. The bugs in this im-
plementation was earlier reported by [1]). The Linux manpage for memchr() [19] states the
following:

void *memchr(const void *s, int c, size_t n);

The memchr() function scans the initial n bytes of the memory area pointed to
by s for the first instance of c. Both c and the bytes of the memory area pointed
to by s are interpreted as unsigned char.

Both the SMALL (with the WANT_SMALL_STRING_ROUTINES macro defined) and the FAST
(without the WANT_SMALL_STRING_ROUTINES macro defined) implementations do not follow
this specification, which led to a bug when c is greater than 255.

An example input is shown below (compiled with the -m32 flag). Here, the character 257
is interpreted as a signed int. So, the equality check with the characters in src never
succeeds.

// We should find the occurance of 1
const char src[] = {1, 0, 0, 0, 0};
if (!memchr(src, 257, 5)) {

© 2024, Indian Institute of Technology Delhi

https://github.com/compilerai/bug-reports

4.4 Bugs Found 29

printf("BUG!\n");
}

strcmp

We found a bug in the strcmp implementations of dietlibc. The Linux manpage for
strcmp() [20] states the following:

int strcmp(const char *s1, const char *s2);

The strcmp() function compares the two strings s1 and s2. The locale is not
taken into account. The comparison is done using unsigned characters.

Both the SMALL (with the WANT_SMALL_STRING_ROUTINES macro defined) and the FAST
(without the WANT_SMALL_STRING_ROUTINES macro defined) implementations do not follow
this specification, which led to a bug.

An example input is shown below. Here, the character 255 is interpreted as a signed char,
which gives it a value of -128. So, the comparison returns a positive value.

const char src[] = {64, 1, 0};
const char dst[] = {64, 255, 0};
int ret = strcmp(src, dst);
if (ret >= 0) {

printf("BUG!\n");
}

strcasecmp and strncasecmp

We found a bug in the strcasecmp and the strncasecmp implementations of dietlibc.
The Linux manpage for strcasecmp() and strncasecmp() [21] states the following:

int strcasecmp(const char *s1, const char *s2); int strncasecmp(const
char *s1, const char *s2, size_t n);

The strcasecmp() function shall compare, while ignoring differences in case,
the string pointed to by s1 to the string pointed to by s2. The strncasecmp()
function shall compare, while ignoring differences in case, not more than n bytes
from the string pointed to by s1 to the string pointed to by s2.

In the POSIX locale, strcasecmp() and strncasecmp() shall behave as if the
strings had been converted to lowercase and then a byte comparison performed.
The results are unspecified in other locales.

© 2024, Indian Institute of Technology Delhi

4.4 Bugs Found 30

The implementations do not handle the case when the characters belong to the extended
ASCII set.

An example input is shown below.

const char src[] = {'A', 1, 0};
const char dst[] = {'a', 255, 0};
int ret = strcasecmp(src, dst);
if (ret >= 0) {

printf("BUG!\n");
}

int ret = strncasecmp(src, dst, 3);
if (ret >= 0) {

printf("BUG!\n");
}

wcschr and wcsrchr

We found a bug in the wcschr and the wcsrchr implementations of dietlibc. According
to the the wcschr spec [13] and wcsrchr spec [22], if the input c is the null wide character,
then the functions locate the terminating null wide character. dietlibc’s implementation
does not follow that and returns NULL instead.

An example input is shown below.

const wchar_t src[] = {128, 64, 0};
wchar_t* ret = wcschr(src, 0);
if (!ret) {

printf("BUG!\n");
}

wchar_t* ret = wcsrchr(src, 0);
if (!ret) {

printf("BUG!\n");
}

© 2024, Indian Institute of Technology Delhi

Chapter 5

Comparison with Differential Fuzzing

As discussed in Chapter 1, one could use the inequivalence checker in a differential testing
setting as well. To compare our approach with existing differential testing techniques, we
used afl-fuzz [23], which is a security oriented fuzzer. We considered all the program pairs
for which our tool is able to prove inequivalence, and run afl-fuzz on all those pairs.

5.1 American Fuzzy Lop

American Fuzzy Lop (afl-fuzz) is a security oriented fuzzer that employs a novel type
of compile-time instrumentation and genetic algorithms to automatically discover clean,
interesting test cases that trigger new internal states in the targeted binary. It is a coverage-
guided mutation based fuzzer. This substantially improves the functional coverage for the
fuzzed code. You provide a set of valid inputs and it will search for crashes and hangs in the
vicinity of these inputs. It is not suited to search for logical errors in the input programs,
unless we explicitly instrument the programs to crash/hang in the event of these errors.

A typical workflow to test a program using afl-fuzz is shown below. afl-fuzz feeds the
input via standard input or an input file -- so the input is a series of characters. We need to
implement a fuzzing harness to appropriately parse the input so that it can be sent to our
test program. The harness implementation decides the input space that would be explored.
The fuzzer then monitors the program for crashes and hangs.

Figure 5.1: An example afl-fuzz workflow

In the case of differential testing, we have two input programs instead of a single program.
To use afl-fuzz for differential fuzzing, we need to some wrapper code around the input

5.2 Designing Harnesses 32

programs, which passes the same input to both the implementations, and checks for unequal
return values or unequal heap states. If it finds a bug, then the wrapper code will crash,
and afl-fuzz will look for this crash.

5.2 Designing Harnesses

Assume that we have (func, src, dst) triplets for which our tool found a distinguishing input.
We want to then use afl-fuzz to try and detect a bug for all such triplets. We need to
implement fuzzing harnesses for each function func to be tested. The fuzzing harness would
pass the same input to both the implementations, and would abort if their outputs (return
values and memory regions) differ. The fuzzer will try to find an input which triggers a
crash (which will be a bug in our case).

We may have multiple harness designs for a given func. In such a case, we use macros
to toggle the implementations. For instance, we could have the following two designs for
memcpy(dst,src,n):

• Non-overlapping memories: both dst and src memories would be non-overlapping,
with an allocated size of MAX_SIZE each. This would lead to some part of the input
space being unexplored, since the inputs can never overlap.

• Overlapping memories: both dst and src lie at some offset in a “virtual memory” of
size VMEM_SIZE, allowing for memory overlap to occur in the input. This harness can
be enabled by defining the macro harness OVERLAP

If there are n such (mutually independent) macros, then there would be 2n total harness
designs. For a given program pair, we run afl-fuzz for all such harnesses to see the effect
of harness design on fuzzer capability. Each experiment can be characterized by a 4-tuple
(func, src, dst, config), where config is a set of macros which are enabled for the harness.

The following macros were used to design harnesses for the given functions:

• OVERLAP: this pertains to functions which modify memory. When enabled, the input
memories can be overlapping. The fuzzer can now explore a larger input space.

• CHARC: this pertains to functions which take a character (usually named c, having type
int) as one of its input. memccpy and memchr are prominent examples.
The difference lies in how the input character is parsed. The harness reads the input
file line-by-line and stores each line in a character array. When CHARC is enabled, c is
read as follows:

*c = cstr[0];

This restricts the value of c to be in the interval [−128, 127]. When CHARC is disabled,
c is read as:

© 2024, Indian Institute of Technology Delhi

5.3 Evaluation 33

*c = atoi(cstr);

The value of c can now span the entire space of 32-bit signed integers. However, if
atoi cannot extract an integer from cstr, then it will return 0.

5.3 Evaluation

We have a total of 148 unique (func, src, dst) triplets. Let macros be a map from function
name to a set of macros that can be enabled for the harnesses for that function. Following
are some examples:

macros(memccpy) = {OVERLAP, CHARC}
macros(memchr) = {CHARC}
macros(memcpy) = {OVERLAP}
macros(strcmp) = {}

macros(swab) = {OVERLAP}

For a given function f , the number of possible harness configurations would be

|PowerSet(macros(f))|

For convenience, denote the {} harness where no macro is enabled, as DEFAULT. The number
of unique (func, src, dst, config) tuples is 258. The timeout for each fuzzing experiment was
2hrs, with execution timeout for each exec being 30ms.

For each inequivalent pair, we could check how many harnesses found a bug, or if any harness
found a bug. The following table shows the number of bugs that afl-fuzz was able to find:

Fuzzer Success Rate
(func, src, dst) 140/148

(func, src, dst, config) 179/258

Table 5.1: afl-fuzz success rate

We discuss more about these cases in detail in the next section.

© 2024, Indian Institute of Technology Delhi

5.4 Case Studies 34

5.4 Case Studies

Fuzzer did not find a bug

This section summarizes the cases where none of the harness designs for a given func found
a bug:

• (stpncpy, freebsd, newlib_small): There were two possible harness designs for
stpncpy: DEFAULT and {OVERLAP}. The counterexample generated by our tool does
not correspond to a valid input (invalid pointer value). This is the reason why both
the harnesses did not find a bug

• (strcmp, dietlibc_small_patched, dietlibc_fast): strcmp takes two strings s1,
s2 as input. The behaviour of these programs differs in two situations:

– When s1 and s2 are not aligned with respect to each other

– When s1 and s2 are not aligned to word boundaries

For the harness to find a bug, it needs to generate input pointers that satisfy the
criteria above. Our harness cannot do it because the pointers are word-aligned by
default. This leads to some part of the input space being unexplored.
A similar case occurred with (strcmp, dietlibc_fast, dietlibc_fast_patched)

• (strlen, dietlibc_small, glibc): dietlib_small returns 0 if the input pointer was
NULL. Hence, the counterexample generated by our tool does not correspond to a valid
input (invalid pointer value). This is the reason why the fuzzer did not find any bug.
A similar case occurred with (strlen, dietlibc_small, klibc) and (strlen, dietlibc_small,
newlib)

• (swab, musl, musl_patched): A similar case occurred with (swab, musl, openbsd).
This case is discussed in Section-5.4

Fuzzer did not find a bug in swab

The man page for swab states the following specification:

void swab(const void *src, void *dest, ssize_t n);

The swab() function copies n bytes from the array pointed to by src to the
array pointed to by dest, exchanging adjacent even and odd bytes.

We have 2 different implementations of swab:

• dietlibc: This implementation swaps the bytes between src and dest without a
temporary variable:

© 2024, Indian Institute of Technology Delhi

5.4 Case Studies 35

...
for (i=0; i<nbytes; i+=2) {

d[i]=s[i+1];
d[i+1]=s[i];

}
...

When src and dest memories coincide, this does not swap the bytes in-place, causing
a bug.
An easy fix for this bug would be to load the values in src into temporary variables
(call this implementation dietlibc_patched):

...
for (i=0; i<nbytes; i+=2) {

char s0 = s[i], s1 = s[i+1];
d[i]=s1;
d[i+1]=s0;

}
...

• musl: This implementation has the same bug as dietlibc. On the same lines, we
have another fixed implementation, namely musl_patched. The only difference this
has from dietlibc is that the input pointer arguments have a restrict type qualifier:

void swab_musl(const void *restrict _src,
void *restrict _dest, ssize_t n);

We ran our tool and the fuzzer between the base and the patched implementations. The
results are shown in the figure below:

Figure 5.2: swab: An edge indicates that we were able to find a distinguishing input

eq32 was able to find a distinguishing input between the base and the patched implemen-
tations. These inputs correspond to coinciding memories.

swab has two possible harness designs: DEFAULT and {OVERLAP}. The DEFAULT harness will
not be able to find a bug because it cannot explore overlapping (and coinciding inputs). The

© 2024, Indian Institute of Technology Delhi

5.4 Case Studies 36

{OVERLAP} harness is only able to find a bug in dietlibc, and not in musl (despite both
the implementations being almost the same in structure).

Here are some observations regarding the musl implementations:

• On removing the restrict qualifier from musl, the fuzzer is able to find a bug between
musl and musl_patched

• By default, the afl-gcc appends -O3 to optimize fuzzing binary builds. The fuzzer is
able to find a bug if we set AFL_DONT_OPTIMIZE (this would disable optimizations)

• On analyzing the assembly code generated for the musl implementation at -O3, we
found that gcc does some trivial vectorization. It assumes that the input memories
cannot alias (due to the restrict qualifier). Multiple memory locations from src are
first loaded, and then are copied to dest while swapping adjacent bytes.
However, on giving an input in which the memories coincide, since the loads occurs
first, the in-place swab occurs correctly. Hence, the fuzzer is not able to find a bug in
this case.

• On removing the restrict qualifier from musl and then analyzing the generated -O3
assembly code, it was observed that the compilers inserts from run-time checks that
verify the information that restrict provides (so that it can branch to the vectorized
version, else it would go to the fallback scalar implementation).
On providing an input in which the memories coincide, we use the fallback implemen-
tation. This leads the fuzzer to find a bug

CHARC Bugs

As described above, this macro is used for benchmarks which take a character as input. I
will motivate multiple harness designs with the help of the memrchr benchmarks. The man
page for memrchr states the following specification:

The memchr() function scans the initial n bytes of the memory area pointed to
by s for the first instance of c. Both c and the bytes of the memory area pointed
to by s are interpreted as unsigned char.

The memrchr() function is like the memchr() function, except that it searches
backward from the end of the n bytes pointed to by s instead of forward from
the beginning.

We have 3 different implementations of memrchr:

• openbsd: This implementation follows the specification and interprets both the char-
acter c and the memory bytes as unsigned char (it involves a unsigned char vs
unsigned char comparison)

© 2024, Indian Institute of Technology Delhi

5.4 Case Studies 37

const unsigned char *cp;
...

cp = (unsigned char *)s + n;
do {

if (*(--cp) == (unsigned char)c)
...

• dietlibc: This implementation interprets c as signed int, while it interprets the
memory bytes as signed char (it involves a signed char vs signed int comparison)

register const char* t=s;
...
for (i=n; i; --i) {

if (*t==c)
...

• glibc: This implementation interprets c as signed int, while it interprets the mem-
ory bytes as unsigned char (it involves a unsigned char vs signed int comparison,
where the former would get sign-extended to a signed integer in the range [0, 255])

...
char_ptr = (unsigned char*)s + n;
...
while (n-- > 0) {

if (*--char_ptr == c)
...

memrchr has two possible harness designs, DEFAULT and {CHARC}. afl-fuzz was run on
all 3 pairs, with both the harnesses. The results are shown in the figure below -- an edge
between two implementations indicates that the harness found a bug.

Figure 5.3: CHARC bugs in memrchr -- red edge indicates that the DEFAULT harness found a
bug, while a blue edge indicates that the {CHARC} harness found a bug. The

dotted case is discussed below

The section below explains why one harness is able to distinguish between some implemen-
tations, while the other is not.

© 2024, Indian Institute of Technology Delhi

5.4 Case Studies 38

• dietlibc-openbsd: A bug is triggered when c has a value outside the range of signed
char, in which case the comparison in dietlibc can never succeed

– DEFAULT: with this design, c can potentially span the entire range of signed int,
so the fuzzer is able to find a bug when the following condition holds:

c < −128 ∨ c > 127

– {CHARC}: with this design, c is always an integer in the range [−128, 127], so the
fuzzer cannot find a bug

• openbsd-glibc: A bug is triggered when c has a value outside the range of unsigned
char, in which case the comparison in glibc can never succeed

– DEFAULT: with this design, c can potentially span the entire range of signed int,
so the fuzzer is able to find a bug when the following condition holds:

c < 0 ∨ c > 255

– {CHARC}: with this design, c is always an integer in the range [−128, 127], so the
fuzzer is able to find a bug when c ∈ [−128, 0)

• dietlibc-glibc: In this case, both of the implementations are buggy with respect to
the actual specification, but we are concerned about an input that distinguishes these
two implementations. It is easy to see that these implementations can be differentiated
when the following condition holds:

c ∈ [−128, 0) ∪ [128, 256)

– DEFAULT: with this design, c can potentially span the entire range of signed int.
The space of buggy inputs is small, so the probability that the fuzzer will find a
bug is very low.
Assuming that the fuzzer would generate uniformly random inputs, and atoi
preserves the input distribution, then the probability of finding a bug is roughly
256
232

= 1
224

.
It took afl-fuzz 40 minutes and 12.1M executions to find the first crash, which
is a lot as compared to other benchmarks.

– {CHARC}: with this design, c is always an integer in the range [−128, 127], so the
fuzzer is able to find a bug quickly when c ∈ [−128, 0)

Similar cases arose in other benchmarks like memccpy and memchr, where the {CHARC} har-
ness did not find a bug, but the DEFAULT harness did. So, whether or not the fuzzer will
find a bug heavily depends on the input space that can be explored by the harness and the
size of the buggy input space.

© 2024, Indian Institute of Technology Delhi

5.5 Conclusion 39

Memory overlap bugs

For functions that modify memory, it should be sufficient to have non-overlapping inputs and
compare the return values from both the implementations. For functions that do modify
memory (memccpy, memcpy), a large part of the input space will remain unexplored with
non-overlapping inputs.

• Defining OVERLAP would enable a harness which allows for overlapping memories. It
reads both the input strings and populates them in a “virtual memory” of a given size

• The same initial memory is fed to both the implementations and the harness checks
if the output memory is same for both

• There were 49 (func, src, dst) triplets where eq32 found a bug with overlapping mem-
ories

• The default fuzzing harness (which gives non-overlapping inputs) did not find any bug
in all of these cases, while the OVERLAP harness is able to find a bug

• One thing to note is that most of the bugs are not actually valid, because the function
specification declares input memory overlap as undefined behaviour. But these bugs
may be of interest to us in some cases

5.5 Conclusion

As seen in the previous sections, the capability of the fuzzer to find a bug depends on a
number of factors. One of those factors is the Designing Harnesses. For each pair that
has to be tested with the fuzzer, we need to design a fuzzing harness for that function. As
discussed in Section-5.2, we may have multiple harness designs for some functions. The
harnesses depend on the programs themselves. This increases a lot of manual work as the
number of benchmarks increase. Our tool does not have this limitation.

The harness design itself may limit the effectiveness of the fuzzing technique. Whether or
not the fuzzer will find a bug depends on the input space that the harness can explore.
A very simple fuzzer which just compares the return values may not be sufficient for heap
manipulating programs. This requires a non-trivial harness. This directly depends on the
harness design. This is not an easy task because we don’t know the space of buggy inputs
beforehand.

In most cases, the fuzzer is able to find a bug very quickly (in less than 10 seconds), while
it usually takes around 100s for our tool for the same. But as discussed in Section-5.4, it
takes a lot of time to find a bug in (memrchr, dietlibc, glibc) with the DEFAULT harness.
However, our tool can find a bug under a couple of minutes. If the space of buggy inputs is
small as compared to the space of all the inputs that the harness can explore, then the time

© 2024, Indian Institute of Technology Delhi

5.5 Conclusion 40

taken to find a bug by the fuzzer increases. This happens because fuzzers usually apply
brute-force techniques (with some guided genetic algorithms), but our symbolic analysis is
highly guided.

© 2024, Indian Institute of Technology Delhi

Chapter 6

An Alternate Approach to Inequivalence Checking

As discussed in Section-3.5, we are essentially collecting paths in the Data-Flow Analysis.
Based on this observation, an alternative approach to inequivalence checking would to run
the Data-Flow Analysis on the individual programs and then try to find a bug.

6.1 Implementation Overview

Let the input programs be denoted by src and dst. The approach is simple, we start from
failconds that correspond to observational inequivalence. So, f ∈ {retsrc ̸= retdst, Hsrc ̸=
Hdst}. For each failure condition f , we run the DFA on both src and dst and collect sets of
paths in both the programs.

Figure 6.1: Alternate Inequivalence Checking Approach

Assume that we collect m paths {ps1, ps2, . . . , psm} in src and collect n paths {ps1, ps2, . . . , psm}
in dst. Then for each i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, discharge the following condition
to an SMT solver

WP(WP(f, psi), pdj) ∧ argsrc = argdst ∧ Hsrc = Hdst

6.2 Comparing the two approaches 42

If any of the m ∗ n conditions is satisfiable, then we have found a bug. This alternate
implementation is also implemented as a part of the eq32 tool, and can be enabled by the
--ineq-individual-tfgs flag.

6.2 Comparing the two approaches

In the discussion going forward, we refer to the previous approach as CFG-Approach, while
the new approach is referred to as TFG-Approach. We first discuss the fundamental differ-
ences between the approaches.

Graph on which the DFA is run

This difference stems from the methodologies itself. In CFG-Approach, we collect failed-
CFGs (which could be partial or complete) and then run the DFA on each of them, while
in TFG-Approach, we run the DFA on both the input TFGs.

Dependency on the equivalence checker

The CFG-Approach directly depends on the number of failed CFGs that we collect and the
unroll-factor µ (both of which depend on the equivalence checker), while the TFG-Approach
is completely agnostic to the equivalence checker

Validity of counter-examples

Due to soundness of our DFA, any counterexamples that we get at the start-node are guar-
anteed to trigger the failcond at the failcond-pc. For CFG-Approach, the failconds can be of
different types. As discussed in Section-3.6, we have to verify the validity of any counterex-
amples that we get.

While for TFG-Approach, the only failconds that we have in this approach are the following,
at the exit-pc:

retsrc ̸= retdst

Hsrc ̸= Hdst

The counterexamples (if any) will definitely trigger these failure conditions, so they will be
valid distinguishing inputs (as these conditions correspond to observational inequivalence).
There is no need to check their validity.

© 2024, Indian Institute of Technology Delhi

6.3 Experimental Comparison 43

Counterexamples execution traces

As discussed in Section-3.6, we use a heuristic in CFG-Approach to get counterexamples with
smaller execution traces. This is only a heuristic and does not guarantee bounded execution
traces. While for the TFG-Approach, since the paths that we collect in this approach would
have bounded length, the execution traces of the counterexamples are guaranteed to be
bounded (by some function of ν).

Algorithm to get counterexamples

The algorithm for CFG-Approach is discussed in 1. The algorithm for TFG-Approach is
described below.

Algorithm 3: Alternative Inequivalence Checking Approach

1 Function altIneqChecking(src, dst, µ, νmax):
2 π, _← bestFirstSearch(src, dst, µ);
3 if π ̸= null then
4 return EQUIV, {};
5 end
6 ν ← 1;
7 while ν ≤ νmax do
8 Γce ← computeIneqAlt(cg, ν);
9 if Γce ̸= ϕ then

10 return INEQ, Γce;
11 end
12 ν ← ν ∗ 2;
13 end
14 return FAIL, {};

This algorithm is mostly the same as alg-1. It has a call to computeIneqAlt() (instead
of computeIneq()), which runs the DFA on both the input programs and returns a set of
counterexamples. It is based on the algorithm described in Section-6.1.

6.3 Experimental Comparison

We have 171 (func, src, dst) triplets which were found to be inequivalent through CFG-Approach.
We tested the same pairs with TFG-Approach and compared the two approaches.

• Number of Inequivalences: CFG-Approach is able to find all inequivalences, while
TFG-Approach can find distinguishing inputs for all triplets except one (TIMEOUT oc-
cured for (memcpy, dietlibc_small, musl) -- discussed in Section-6.4.1)

© 2024, Indian Institute of Technology Delhi

6.3 Experimental Comparison 44

• Time taken: As it can be seen below, both the approaches are able to find counterex-
amples very quickly. For CFG-Approach, number of inequivalences within 100 seconds
was 163, while it was 156 for TFG-Approach.

CFG-Approach TFG-Approach

Figure 6.2: Time Taken to find Inequivalences

• Inequivalence Loop Bound frequency: As it can be seen below, most of the counterex-
amples were found at very low values of loop-bound (ν)

CFG-Approach TFG-Approach

Figure 6.3: Loop Bounds at which Inequivalences were found

• Inequivalence Unroll Factor frequency and Ranking-Ratio: Since TFG-Approach is
agnostic to the unroll-factor used for the equivalence checker, we observe unroll-factor
values only for the first approach. Majority of the counterexamples were found at very
low values of the unroll-factor

© 2024, Indian Institute of Technology Delhi

6.3 Experimental Comparison 45

Figure 6.4: CFG-Approach: Unroll Factors at which we found inequivalence

We also observe that in CFG-Approach, 74 inequivalences were found with the highest
ranked failed-CFG

Figure 6.5: CFG-Approach: Performance of the Ranking Strategy used

The performance of both the approaches is almost the same on these benchmarks, because
most of them were simple, single loop programs. As discussed in the next section, the
approaches deviate when we have multiple loops or nested loops.

© 2024, Indian Institute of Technology Delhi

6.4 Case Studies 46

6.4 Case Studies

6.4.1 Path Explosion in musl::memcpy

The man page for memcpy states the following specification:

void *memcpy(void *dest, const void *src, size_t n);

The memcpy() function copies n bytes from memory area src to memory area
dest. The memory areas must not overlap.

Depending on the implementation, memory overlap can lead to different behaviours. For
instance, if the memories overlap, src < dst, and the implementation does a forward copy,
then the source memory would overwrite itself during the copy.

The dietlibc_small implementation consists of a simple loop that does a forward copy
from src to dst, while the musl implementation copies multiple bytes chunks at once and
has multiple loops. The performance of both the approaches on this benchmark:

• CFG-Approach: This approach found a bug at the following parameters:

unroll-factor 1
loop-bound 1

ranking-ratio 2/10
Time Taken 174s

• TFG-Approach: This approach timed out at 90 minutes. We start from a low value of ν
and double it iteratively. The number of paths collected in the src-tfg and dst-tfg
is tabulated below:

loop-bound src-tfg paths dst-tfg paths
1 2 352
2 3 1728
4 5 15360

As we can see, the number of paths collected in dst-tfg increases exponentially, and
we still don’t have a good coverage of paths. The run timed out while doing a pairwise
satisfiability check with these paths.

6.4.2 CFG-Approach generally requires a low value of loop-bound

Consider the following input programs:

© 2024, Indian Institute of Technology Delhi

6.4 Case Studies 47

int cyclic_23_src(int n, int m){
int sum = 0;
for (int i = 0; i < n; ++i) {

for (int j = 0; j < m; ++j) {
sum++;

}
}
return sum;

}

int cyclic_23_dst(int n, int m){
int sum = 0;
for (int i = 0; i < n; ++i) {

for (int j = 0; j < m; ++j) {
if (i == 1 && j == 1) {

sum += 2;
} else {

sum++;
}

}
}
return sum;

}

It is easy to see that n ≥ 2 ∧m ≥ 2 is a sufficient condition for inequivalence. Below, we
try to figure out the minimum value of ν required for both the approaches:

• TFG-Approach: The src-tfg is shown below.

© 2024, Indian Institute of Technology Delhi

6.4 Case Studies 48

Figure 6.6: cyclic_23_src. dst-tfg is similar in structure, but has extra branches in the
inner loop body

The smallest execution path pmin in the src-tfg that will trigger distinguishing be-
haviour in both the programs would occur at n = 2 ∧ m = 2. This means that the
outer loop would be executed twice, and in both the iterations of the outer loop, the
inner loop will also be executed twice. The iteration space consists of the points (i, j):

{(0, 0), (0, 1), (1, 0), (1, 1)}

The following edge checks the condition for the inner loop:

Lfor.cond1%1%bbentry⇒ Lfor.cond1%2%d

This edge will occur 6 times in pmin (4 times for entering the inner loop, 2 times for
exiting it), which is why we need ν ≥ 6.

• CFG-Approach: The product-CFG for these two programs is shown below.

Figure 6.7: The product program has a more compact structure than the individual pro-
grams

© 2024, Indian Institute of Technology Delhi

6.4 Case Studies 49

The smallest execution path pmin in this product-CFG that will trigger distinguishing
behaviour is shown below:

e1 · e2 · (e3 · e4)2 · e5 · e2 · (e3 · e4)2 · e5 · e6

The edges e3, e4 have the maximum frequency of 4, which is why we need a ν ≥ 4.

Performance of both the approaches on cyclic_23:

• CFG-Approach: This approach found a bug at the following parameters:

unroll-factor 1
loop-bound 1

ranking-ratio 7/10
Time Taken 38.28s

We are able to find a bug at ν = 1, and not 4, because of failure conditions other than
those of observational inequivalence.

• TFG-Approach: This approach did not find any distinguishing input at ν = 4, because
it did not cover the buggy paths. But, it was able to find a bug at ν = 6 (time taken =
300s). The number of paths collected in the src-tfg and dst-tfg is tabulated below:

loop-bound src-tfg paths dst-tfg paths
1 2 2
2 4 6
4 16 86
6 64 1364

We make the following small modification to cyclic_23_dst:

int cyclic_23_dst(int n, int m){
int sum = 0;
for (int i = 0; i < n; ++i) {

for (int j = 0; j < m; ++j) {
if (i == 1 && j == 2) { // Change here

sum += 2;
} else {

sum++;
}

}
}
return sum;

}

© 2024, Indian Institute of Technology Delhi

6.5 Conclusion 50

It can be seen that the minimum value of ν required by CFG-Approach is 6, while
TFG-Approach needs a minimum value of 8.

Performance of both the approaches after this modification:

• CFG-Approach: This approach found a bug at the following parameters:

unroll-factor 1
loop-bound 2

ranking-ratio 16/35
Time Taken 40.68s

We are able to find a bug at ν = 2, and not 6, because of failure conditions other than
those of observational inequivalence.

• TFG-Approach: This approach did not find any distinguishing input at ν = 4, 6 because
it did not cover the buggy paths. It was able to find a bug at ν = 8, but it took 242
minutes for the same.
The number of paths collected in the src-tfg and dst-tfg is tabulated below:

loop-bound src-tfg paths dst-tfg paths
1 2 2
2 4 6
4 16 86
6 64 1364
8 256 21846

6.5 Conclusion

Both the approaches perform equally well on small programs, typically with at most one loop.
The number of paths that are collected are also less. In most cases, both the approaches
find counterexamples at low values of unroll-factor and loop-bound. On larger programs
with multiple loops, CFG-Approach performs better than TFG-Approach.

TFG-Approach is like a brute-force approach which explores all the paths in the individual
programs up to a certain bound. This may lead to an exponential blowup in the number of
paths collected. Moreover, there could be another quadratic blowup on top of this because
we have to check for pairwise satisfiability of paths in src and dst. The fundamental problem
in TFG-Approach is that for some of the paths that we collect, their path conditions could be
false. Moreover, when we do a pairwise checking of paths, not all pair of paths can be taken
together. CFG-Approach mitigates this problems to some extent because each product-edge
contains path-sets that execute in a lockstep, which makes this approach more guided.

© 2024, Indian Institute of Technology Delhi

6.5 Conclusion 51

One situation where TFG-Approach could be useful is when the input programs have very
poor correlations between them, in which case we might not get any failed-CFGs. But since
this approach is agnostic to the equivalence checker, it will still collect all the paths.

CFG-Approach typically requires a lower value of loop-bound because a product-CFG is a
more compact representation of both the input programs. We believe that CFG-Approach
is heavily dependent on the equivalence checker. I believe that the better the equivalence
checker is, the better correlations we can find, the better this approach will be.

© 2024, Indian Institute of Technology Delhi

Chapter 7

Conclusion, Limitations and Future Work

We have created and described an automatic and sound approach for Inequivalence Check-
ing, based on the Equivalence Checker tool Counter. We evaluated our tool on functions
from 9 different C library implementations and found a number of inequivalences. We also
discussed that some of the bugs could be invalid due to Undefined Behaviour based on
function specifications, but those bugs may still be of importance to us. So far, bugs in 11
functions have been reported across 4 different C libraries.

We discussed an alternative approach to inequivalence checking, which was agnostic to
the Equivalence Checker and observed that it does not scale to larger and more complex
programs. We believe that the problems of Equivalence and Inequivalence Checking are
tightly bound, and can help each other. Our approach would improve more and more as the
Equivalence Checker improves.

We also compared our approach against state of the art fuzzing techniques (afl-fuzz) and
found that it requires a lot of manual work to design fuzzing harnesses. Designing harnesses
is a tricky task because some part of the input space might remain unexplored, which could
lead to a bug being unidentified. Our approach does not have this limitation and is heavily
guided.

However, our approach is not without limitations. Our tool does not support Inter-Procedural
Inequivalence Checking and has very limited support for Equivalence Checking with function
calls (the functions are assumed to be uninterpreted functions). This limits our capability
to test more complex and large scale programs. Differential Fuzzing Techniques do not have
this limitation. Another limitation is that we still may have a blowup in number of paths as
the loop-bound increases. So, choosing an appropriate value of ν automatically is important
– a low value may not ensure enough coverage of paths, while a large value may increase
the run-time. Currently, we start from low values of ν and increase it iteratively.

Another limitation is that we currently run the equivalence checker to completion first and
then run our DFA on the collected failed-CFGs, but this may take a lot of time on larger
benchmarks, at a high value of the unroll-factor. A solution for this could be to switch back-
and-forth between equivalence and inequivalence checking. It would be crucial to strike a
balance between the two.

As for our Future Work, we believe that it is possible to design a more sophisticated and
precise transfer function for product-CFG loop body using Region Based Analysis. Counter

53

already infer some affine invariants at each of the product-CFG nodes, and it might be
possible to use them to our advantage in the Backward Analysis.

© 2024, Indian Institute of Technology Delhi

REFERENCES

[1] Shubhani Gupta, Abhishek Rose, and Sorav Bansal. Counterexample-guided correlation
algorithm for translation validation. Proc. ACM Program. Lang., 4(OOPSLA), nov
2020.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co.,
Inc., USA, 2006.

[3] The GNU C library. https://www.gnu.org/software/libc/.

[4] diet libc - a libc optimized for small size. https://www.fefe.de/dietlibc/.

[5] FreeBSD libc sources. https://github.com/freebsd/freebsd-src.

[6] NetBSD libc sources. https://github.com/NetBSD/src.

[7] OpenBSD libc sources. https://github.com/openbsd/src.

[8] klibc sources. https://mirrors.edge.kernel.org/pub/linux/libs/klibc/2.0/.

[9] musl webpage. https://musl.libc.org/.

[10] Newlib: a C standard library for embedded systems. https://sourceware.org/
newlib/.

[11] µClibc: an embedded C library. https://uclibc-ng.org/.

[12] memccpy specification. https://pubs.opengroup.org/onlinepubs/9699919799/
functions/memccpy.html.

[13] wcschr linux man page. https://man.openbsd.org/wcschr.3.

[14] swab specification. https://man7.org/linux/man-pages/man3/swab.3.html.

[15] C standard iso/iec 9899. https://www.open-std.org/jtc1/sc22/wg14/www/docs/
n1124.pdf.

[16] memcpy(3) linux manual page. https://man7.org/linux/man-pages/man3/memcpy.
3.html.

[17] strrchr linux man page. https://man7.org/linux/man-pages/man3/strchr.3.
html.

54

https://www.gnu.org/software/libc/
https://www.fefe.de/dietlibc/
https://github.com/freebsd/freebsd-src
https://github.com/NetBSD/src
https://github.com/openbsd/src
https://mirrors.edge.kernel.org/pub/linux/libs/klibc/2.0/
https://musl.libc.org/
https://sourceware.org/newlib/
https://sourceware.org/newlib/
https://uclibc-ng.org/
https://pubs.opengroup.org/onlinepubs/9699919799/functions/memccpy.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/memccpy.html
https://man.openbsd.org/wcschr.3
https://man7.org/linux/man-pages/man3/swab.3.html
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
https://man7.org/linux/man-pages/man3/memcpy.3.html
https://man7.org/linux/man-pages/man3/memcpy.3.html
https://man7.org/linux/man-pages/man3/strchr.3.html
https://man7.org/linux/man-pages/man3/strchr.3.html

REFERENCES 55

[18] NetBSD::swab fixed implementation. https://github.com/NetBSD/src/blob/trunk/
lib/libc/string/swab.c.

[19] memchr linux man page. https://man7.org/linux/man-pages/man3/memchr.3.html.

[20] strcmp linux man page. https://man7.org/linux/man-pages/man3/strcmp.3.html.

[21] strcasecmp and strncasecmp specification. https://pubs.opengroup.org/
onlinepubs/009696799/functions/strcasecmp.html.

[22] wcsrchr linux man page. https://man.openbsd.org/wcsrchr.3.

[23] American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/.

© 2024, Indian Institute of Technology Delhi

https://github.com/NetBSD/src/blob/trunk/lib/libc/string/swab.c
https://github.com/NetBSD/src/blob/trunk/lib/libc/string/swab.c
https://man7.org/linux/man-pages/man3/memchr.3.html
https://man7.org/linux/man-pages/man3/strcmp.3.html
https://pubs.opengroup.org/onlinepubs/009696799/functions/strcasecmp.html
https://pubs.opengroup.org/onlinepubs/009696799/functions/strcasecmp.html
https://man.openbsd.org/wcsrchr.3
https://lcamtuf.coredump.cx/afl/

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	Introduction
	Background
	Data-Flow Analysis
	Semilattices
	Transfer Functions
	DFA Fixed-Point Iteration Algorithm

	Control-Flow Graph Representation
	Counter: A Black-Box Equivalence Checker

	Inequivalence Checker
	Overview
	Collecting Inconsistencies
	Propagating the Inconsistencies
	Data-Flow Analysis for Inequivalence Checking
	Notation
	Domain of DFA values
	Initialization of DFA Values
	Meet Operator
	Transfer Function
	Characteristics of the Algorithm

	Getting Distinguishing Inputs
	Validating the Counterexamples
	Ranking the product-CFGs
	Putting all components together

	Evaluation
	Experimental Setup and Benchmark Selection
	Results
	Undefined Behaviour
	Bugs Found
	klibc
	netbsd
	newlib
	dietlibc

	Comparison with Differential Fuzzing
	American Fuzzy Lop
	Designing Harnesses
	Evaluation
	Case Studies
	Conclusion

	An Alternate Approach to Inequivalence Checking
	Implementation Overview
	Comparing the two approaches
	Experimental Comparison
	Case Studies
	Path Explosion in musl::memcpy
	CFG-Approach generally requires a low value of loop-bound

	Conclusion

	Conclusion, Limitations and Future Work
	REFERENCES

